Passive Targeting of Nanoparticles to Cancer

  • Jayvadan K. Patel
  • Anita P. Patel


Cancer is a leading cause of death globally. For the effectual treatment of cancer, it is crucial to advance our knowledge of the pathophysiology of cancer, discover novel anti-cancer agents, and expand new biomedical technology. A large number of possible barriers exist in the efficient delivery of small-sized drugs to solid tumors. After intravenous administration, many small-sized chemotherapeutic medicines have a larger volume of distribution, which is usually related to a narrow therapeutic index that is attributable to their elevated level of toxic effects in healthy tissues. A nanoparticle-based drug for targeting cancer is one of the auspicious advances to conquer the lack of tissue specificity associated with common chemotherapeutic drugs. Accordingly, the overall objectives are to lengthen a patient’s lifespan, avoid recurrence of a cancer episode, and concurrently lessen the toxic effects of chemotherapeutic drugs. A range of approaches have been investigated for the nanoparticle-mediated targeting of drugs. Among them, a passive drug targeting approach has been the most commonly explored, and much preclinical learning has provided insight into its soundness. This approach is in accordance with the abnormality of tumor vasculatures, allowing nanoparticles the right of entry to tumors while avoiding distribution into healthy tissues. Thus, a passive drug targeting approach facilitates the advancement of a targeted nano-carrier structure loaded with chemotherapeutic agents for an improved effective profile with negligible toxic effects.


Cancer Nanoparticles Passive targeting Tissue specificity 


  1. 1.
    BWKP, S., & Wild, C. P. (2015). World cancer report 2014. Lyon: International Agency for Research on Cancer.Google Scholar
  2. 2.
    Ogawara, K., Yoshizawa, Y., Un, K., Araki, T., Kimura, T., & Higaki, K. (2013). Nanoparticle-based passive drug targeting to tumors: Considerations and implications for optimization. Biological & Pharmaceutical Bulletin, 36(5), 698–702.CrossRefGoogle Scholar
  3. 3.
    Center for Disease Control and Prevention. (2015, February 2). Global cancer statistics. Retrieved from
  4. 4.
    Bazak, R., Houri, M., El Achy, S., Hussein, W., & Refaat, T. (2014). Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Molecular and Clinical Oncology, 2(6), 904–908.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Danhier, F., Feron, O., & Préat, V. (2010). To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, 148(2), 135–146.PubMedCrossRefGoogle Scholar
  6. 6.
    Singla, A. K., Garg, A., & Aggarwal, D. (2002). Paclitaxel and its formulations. International Journal of Pharmaceutics, 235(1–2), 179–192.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L. S., Lyu, Y. L., Liu, L. F., et al. (2012). Identification of the molecular basis of doxorubicin-induced cardiotoxicity. Nature Medicine, 18(11), 1639–1642.PubMedCrossRefGoogle Scholar
  8. 8.
    Byrne, J. D., Betancourt, T., & Brannon-Peppas, L. (2008). Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews, 60(15), 1615–1626.PubMedCrossRefGoogle Scholar
  9. 9.
    Araki, T., Kono, Y., Ogawara, K., Watanabe, T., Ono, T., Kimura, T., et al. (2012). Formulation and evaluation of paclitaxel-loaded polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer. Biological & Pharmaceutical Bulletin, 35(8), 1306–1313.CrossRefGoogle Scholar
  10. 10.
    Thigpen, J. T., Aghajanian, C. A., Alberts, D. S., Campos, S. M., Gordon, A. N., Markman, M., et al. (2005). Role of pegylated liposomal doxorubicin in ovarian cancer. Gynecologic Oncology, 96(1), 10–18.PubMedCrossRefGoogle Scholar
  11. 11.
    Wakaskar, R. R. (2017). Challenges pertaining to adverse effects of drugs. International Journal of Drug Development and Research, 9(3), 1–2.Google Scholar
  12. 12.
    Sparreboom, A., Scripture, C. D., Trieu, V., Williams, P. J., De, T., Yang, A., et al. (2005). Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clinical Cancer Research, 11(11), 4136–4143.PubMedCrossRefGoogle Scholar
  13. 13.
    Bae, Y. H. (2009). Drug targeting and tumor heterogeneity. Journal of Controlled Release, 133(1), 2–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Wakaskar, R. R. (2017). Passive and active targeting in tumor microenvironment. International Journal of Drug Development and Research, 9(2), 37–41.Google Scholar
  15. 15.
    Garnette, M. C. (2001). Targeted drug conjugates: Principles and progress. Advanced Drug Delivery Reviews, 53(2), 171–216.CrossRefGoogle Scholar
  16. 16.
    Kim, J. H., Kim, Y. S., Park, K., Lee, S., Nam, H. Y., Min, K. H., et al. (2008). Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. Journal of Controlled Release, 127(1), 41–49.PubMedCrossRefGoogle Scholar
  17. 17.
    Lamprecht, A., Ubrich, N., Yamamoto, H., Schäfer, U., Takeuchi, H., Maincent, P., et al. (2001). Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. The Journal of Pharmacology and Experimental Therapeutics, 299(2), 775–781.PubMedGoogle Scholar
  18. 18.
    Chytil, P., Etrych, T., Konák, C., Sírová, M., Mrkvan, T., Boucek, J., et al. (2008). New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. Journal of Controlled Release, 127(2), 121–130.PubMedCrossRefGoogle Scholar
  19. 19.
    Maeda, H., Wu, J., Sawa, T., Matsumura, Y., & Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. Journal of Controlled Release, 65(1–2), 271–284.PubMedCrossRefGoogle Scholar
  20. 20.
    Rosenblum, D., & Peer, D. (2014). Omics-based nanomedicine: The future of personalized oncology. Cancer Letters, 352(1), 126–136.PubMedCrossRefGoogle Scholar
  21. 21.
    Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 46(12), 6387–6392.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Maeda, H. (2001). The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor-selective macromolecular drug targeting. Advances in Enzyme Regulation, 41(1), 189–207.PubMedCrossRefGoogle Scholar
  23. 23.
    Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257.PubMedCrossRefGoogle Scholar
  24. 24.
    Greish, K. (2010). Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In S. R. Grobmyer & B. M. Moudgil (Eds.), Cancer nanotechnology. Methods in Molecular Biology (Methods and Protocols) (Vol. 624, pp. 25–37). Totowa, NJ: Humana Press/Springer.Google Scholar
  25. 25.
    Gazit, Y., Baish, J. W., Safabakhsh, N., Leuniq, M., Baxter, L. T., & Jain, R. K. (1997). Fractal characteristics of tumor vascular architecture during tumor growth and regression. Microcirculation, 4(4), 395–402.PubMedCrossRefGoogle Scholar
  26. 26.
    Narang, A. S., & Varia, S. (2011). Role of tumor vascular architecture in drug delivery. Advanced Drug Delivery Reviews, 63(8), 640–658.PubMedCrossRefGoogle Scholar
  27. 27.
    Maeda, H., Fanq, J., Inutsuka, T., & Kitamoto, Y. (2003). Vascular permeability enhancement in solid tumor: Various factors, mechanisms involved and its implications. International Immunopharmacology, 3(3), 319–328.PubMedCrossRefGoogle Scholar
  28. 28.
    Wu, J., Akaike, T., Hayashida, K., Okamoto, T., Okuyama, A., & Maeda, H. (2001). Enhanced vascular permeability in solid tumor involving peroxynitrite and matrix metalloproteinases. Japanese Journal of Cancer Research, 92(4), 439–451.PubMedCrossRefGoogle Scholar
  29. 29.
    Mann, M. J., Gibbons, G. H., Hutchinson, H., Poston, R. S., Hoyt, E. G., Robbins, R. C., et al. (1999). Pressure-mediated oligonucleotide transfection of rat and human cardiovascular tissues. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 6411–6416.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chauhan, V. P., & Jain, R. K. (2013). Strategies for advancing cancer nanomedicine. Nature Materials, 12(11), 958–962.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D. A., Torchilin, V. P., et al. (1995). Vascular permeability in a human tumor xenograft: Molecular size dependence and cutoff size. Cancer Research, 55(17), 3752–3756.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Lee, H., Hoang, B., Fonge, H., Reilly, R. M., & Allen, C. (2010). In vivo distribution of polymeric nanoparticles at the whole-body, tumor, and cellular levels. Pharmaceutical Research, 27(11), 2343–2355.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Ernsting, M. J., Murakami, M., Roy, A., & Li, S.-D. (2013). Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. Journal of Controlled Release, 172(3), 782–794.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chou, L. Y. T., Ming, K., & Chan, W. C. W. (2011). Strategies for the intracellular delivery of nanoparticles. Chemical Society Reviews, 40(1), 233–245.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Albanese, A., Tang, P. S., & Chan, W. C. W. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14(1), 1–16.PubMedCrossRefGoogle Scholar
  36. 36.
    Cabral, H., Matsumoto, Y., Mizuno, K., Chen, Q., Murakami, M., Kimura, M., et al. (2011). Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nature Nanotechnology, 6(12), 815–823.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Kolhar, P., Anselmo, A. C., Gupta, V., Pant, K., Prabhakarpandian, B., Ruoslahti, E., et al. (2013). Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proceedings of the National Academy of Sciences of the United States of America, 110(26), 10753–10758.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Wong, C., Stylianopoulos, T., Cui, J., Martin, J., Chauhan, V. P., Jiang, W., et al. (2011). Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proceedings of the National Academy of Sciences of the United States of America, 108(6), 2426–2431.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Tong, R., Hemmati, H. D., Langer, R., & Kohane, D. S. (2012). Photoswitchable nanoparticles for triggered tissue penetration and drug delivery. Journal of the American Chemical Society, 134(21), 8848–8855.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tong, R., Chiang, H. H., & Kohane, D. S. (2013). Photoswitchable nanoparticles for in vivo cancer chemotherapy. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 19048–19053.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Li, H. J., Du, J. Z., Du, X. J., Xu, C. F., Sun, C. Y., Wang, H. X., et al. (2016). Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America, 113(15), 41640–44169.CrossRefGoogle Scholar
  42. 42.
    Liechty, W. B., & Peppas, N. A. (2012). Expert opinion: Responsive polymer nanoparticles in cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics, 80(2), 241–246.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Toy, R., Peiris, P. M., Ghaghada, K. B., & Karathanasis, E. (2014). Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (London, England), 9(1), 121–134.CrossRefGoogle Scholar
  44. 44.
    Smith, B. R., Kempen, P., Bouley, D., Xu, A., Liu, Z., Melosh, N., et al. (2012). Shape matters: Intravital microscopy reveals surprising geometrical dependence for nanoparticles in tumor models of extravasation. Nano Letters, 12(7), 3369–3377.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Barua, S., Yoo, J. W., Kolhar, P., Wakankar, A., Gokam, Y. R., & Mitragotri, S. (2013). Particle shape enhances specificity of antibody-displaying nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3270–3275.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ananta, J. S., Godin, B., Sethi, R., Moriggi, L., Liu, X., Serda, R. E., et al. (2010). Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nature Nanotechnology, 5(11), 815–821.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Champion, J. A., & Mitragotri, S. (2006). Role of target geometry in phagocytosis. Proceedings of the National Academy of Sciences of the United States of America, 103(13), 4930–4934.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Chithrani, B. D., & Chan, W. C. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters, 7(6), 1542–1550.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Anselmo, A. C., Zhanq, M., Kumar, S., Vogus, D. R., Menegatti, S., Helgeson, M. E., et al. (2015). Elasticity of nanoparticles influences their blood circulation, phagocytosis, endocytosis, and targeting. ACS Nano, 9(3), 3169–3177.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular Pharmaceutics, 5(4), 505–515.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sykes, E. A., Dai, Q., Sarsons, C. D., Chen, J., Rocheleau, J. V., Hwang, D. M., et al. (2016). Tailoring nanoparticle designs to target cancer based on tumor pathophysiology. Proceedings of the National Academy of Sciences of the United States of America, 113(9), E1142–E1151.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Pelicano, H., Martin, D. S., Xu, R. H., & Huang, P. (2006). Glycolysis inhibition for anticancer treatment. Oncogene, 25(34), 4633–4646.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Deryugina, E. I., & Quigley, J. P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Reviews, 25(1), 9–34.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Chari, R. V. (1998). Targeted delivery of chemotherapeutics: Tumor-activated prodrug therapy. Advanced Drug Delivery Reviews, 31(1–2), 89–104.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Mansour, A. M., Drevs, J., Esser, N., Hamada, F. M., Badary, O. A., Unger, C., et al. (2003). A new approach for the treatment of malignant melanoma: Enhanced antitumor efficacy of an albumin-binding doxorubicin prodrug that is cleaved by matrix metalloproteinase 2. Cancer Research, 63(14), 4062–4066.PubMedGoogle Scholar
  56. 56.
    Kim, G. J., & Nie, S. (2005). Targeted cancer nanotherapy. Materials Today, 8(8), 28–33.CrossRefGoogle Scholar
  57. 57.
    Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews. Cancer, 17(1), 20–37.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Sanna, V., Pala, N., & Sechi, M. (2014). Targeted therapy using nanotechnology: Focus on cancer. International Journal of Nanomedicine, 9(1), 467–483.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Awada, A., Bondarenko, I. N., Bonneterre, J., Nowara, E., Ferrero, J. M., Bakshi, A. V., et al. (2014). A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Annals of Oncology, 25(4), 824–831.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Burris, H. A., Wang, J. S., Johnson, M. L., Falchook, G. S., Jones, S. F., Strickland, D. K., et al. (2017). A phase I, open-label, first-time-in-patient dose escalation and expansion study to assess the safety, tolerability, and pharmacokinetics of nanoparticle encapsulated Aurora B kinase inhibitor AZD2811 in patients with advanced solid tumours. Journal of Clinical Oncology, 35(15), TPS2608–TPS2608.CrossRefGoogle Scholar
  61. 61.
    Batist, G., Sawyer, M., Gabrail, N., Christiansen, N., Marshall, J. L., Spigel, D. R., et al. (2008). A multicenter, phase II study of CPX-1 liposome injection in patients (pts) with advanced colorectal cancer (CRC). Journal of Clinical Oncology, 26(15), 4108–4108.CrossRefGoogle Scholar
  62. 62.
    Gradishar, W. J., Tjulandin, S., Davidson, N., Shaw, H., Desai, N., Bhar, P., et al. (2005). Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. Journal of Clinical Oncology, 23(31), 7794–7803.PubMedCrossRefGoogle Scholar
  63. 63.
    Lancet, J. E., Uy, G. L., Cortes, J. E., Newell, L. F., Lin, T. L., Ritchie, E. K., et al. (2016). Final results of a phase III randomized trial of CPX-351 versus 7 + 3 in older patients with newly diagnosed high risk (secondary) AML. Journal of Clinical Oncology, 34(15), 7000.CrossRefGoogle Scholar
  64. 64.
    Bogart, L. K., Pourroy, G., Murphy, C. J., Puntes, V., Pellegrino, T., Rosenblum, D., et al. (2014). Nanoparticles for imaging, sensing, and therapeutic intervention. ACS Nano, 8(4), 3107–3122.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Theek, B., Gremse, F., Kunjachan, S., Fokong, S., Pola, R., Pechar, M., et al. (2014). Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging. Journal of Controlled Release, 182(1), 83–89.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hansen, A. E., Petersen, A. L., Henriksen, J. R., Boerresen, B., Rasmussen, P., Elema, D. R., et al. (2015). Positron emission tomography based elucidation of the enhanced permeability and retention effect in dogs with cancer using copper-64 liposomes. ACS Nano, 9(7), 6985–6995.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Miller, M. A., Gadde, S., Pfirschke, C., Engblom, C., Sprachman, M. M., Kohler, R. H., et al. (2015). Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Science Translational Medicine, 7(314), 314ra183.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lee, H., Shields, A. F., Siegel, B. A., Miller, K. D., Krop, I., Ma, C. X., et al. (2017). 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clinical Cancer Research, 23(15), 4190–4202.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Wilhelm, S., Tavares, A. J., Dai, Q., Ohta, S., Audet, J., Dvorak, H. F., et al. (2016). Analysis of nanoparticle delivery to tumours. Nature Reviews Materials, 1(1), 16014.CrossRefGoogle Scholar
  70. 70.
    van Vlerken, L. E., Duan, Z., Little, S. R., Seiden, M. V., & Amiji, M. M. (2008). Biodistribution and pharmacokinetic analysis of paclitaxel and ceramide administered in multifunctional polymer-blend nanoparticles in drug resistant breast cancer model. Molecular Pharmaceutics, 5(4), 516–526.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Cui, Y., Zhang, M., Zeng, F., Jin, H., Xu, Q., & Huang, Y. (2016). Dual-targeting magnetic PLGA nanoparticles for codelivery of paclitaxel and curcumin for brain tumor therapy. ACS Applied Materials & Interfaces, 8(47), 32159–32169.CrossRefGoogle Scholar
  72. 72.
    Peer, D., & Margalit, R. (2004). Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal doxorubicin in syngeneic and human xenograft mouse tumor models. Neoplasia, 6(4), 343–353.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Shi, J., Xiao, Z., Kamaly, N., & Farokhzad, O. C. (2011). Self-assembled targeted nanoparticles: Evolution of technologies and bench to bedside translation. Accounts of Chemical Research, 44(10), 1123–1134.PubMedCrossRefGoogle Scholar
  74. 74.
    Xu, R., Zhang, G., Mai, J., Deng, X., Segura-Ibarra, V., Wu, S., et al. (2016). An injectable nanoparticle generator enhances delivery of cancer therapeutics. Nature Biotechnology, 34(4), 414–418.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Levy, O., Brennen, W. N., Han, E., Rosen, D. M., Musabeyezu, J., Safaee, H., et al. (2016). A prodrug-doped cellular Trojan Horse for the potential treatment of prostate cancer. Biomaterials, 91(1), 140–150.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Huang, B., Abraham, W. D., Zheng, Y., Bustamante Lopez, S. C., Luo, S. S., & Irvine, D. J. (2015). Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Science Translational Medicine, 7(291), 291ra294.CrossRefGoogle Scholar
  77. 77.
    Monopoli, M. P., Åberg, C., Salvati, A., & Dawson, K. A. (2012). Biomolecular coronas provide the biological identity of nanosized materials. Nature Nanotechnology, 7(12), 779–786.PubMedCrossRefGoogle Scholar
  78. 78.
    Krpetić, Ž., Anguissola, S., Garry, D., Kelly, P. M., & Dawson, K. A. (2014). Nanomaterials: Impact on cells and cell organelles. In G. D. Capco & Y. Chen (Eds.), Nanomaterial. Impact on cell biology and medicine (pp. 135–156). Dordrecht: Springer.Google Scholar
  79. 79.
    Barreto, J. A., O’Malley, W., Kubeil, M., Graham, B., Stephan, H., & Spiccia, L. (2011). Nanomaterials: Applications in cancer imaging and therapy. Advanced Materials, 23(12), 18–40.CrossRefGoogle Scholar
  80. 80.
    Malam, Y., Loizidou, M., & Seifalian, A. M. (2009). Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences, 30(11), 592–599.PubMedCrossRefGoogle Scholar
  81. 81.
    Illés, E., Szekeres, M., Kupcsik, E., Tóth, I. Y., Farkas, K., Jedlovszky-Hajdú, A., et al. (2014). PEGylation of surfacted magnetite core-shell nanoparticles for biomedical application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 460(1), 429–440.CrossRefGoogle Scholar
  82. 82.
    Thierry, B., & Griesser, H. J. (2012). Dense PEG layers for efficient immunotargeting of nanoparticles to cancer cells. Journal of Materials Chemistry, 22(18), 8810–8819.CrossRefGoogle Scholar
  83. 83.
    Ranganathan, R., Madanmohan, S., Kesavan, A., Baskar, G., Krishnamoorthy, Y. R., Santosham, R., et al. (2012). Nanomedicine: Towards development of patient-friendly drug-delivery systems for oncological applications. International Journal of Nanomedicine, 7(1), 1043–1060.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Walkey, C. D., Olsen, J. B., Guo, H., Emili, A., & Chan, W. C. W. (2012). Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. Journal of the American Chemical Society, 134(4), 2139–2147.PubMedCrossRefGoogle Scholar
  85. 85.
    Haume, K., Mason, N. J., & Solov’yov, A. (2016). Modeling of nanoparticle coatings for medical applications. European Physical Journal D: Atomic, Molecular, Optical and Plasma Physics, 70(9), 181.CrossRefGoogle Scholar
  86. 86.
    Ashley, J. D., Stefanick, J. F., Schroeder, V. A., Suckow, M. A., Kiziltepe, T., & Bilgicer, B. (2014). Liposomal bortezomib nanoparticles via boronic ester prodrug formulation for improved therapeutic efficacy in vivo. Journal of Medicinal Chemistry, 57(12), 5282–5292.PubMedCrossRefGoogle Scholar
  87. 87.
    Orlowski, R. Z., Nagler, A., Sonneveld, P., Bladé, J., Hajek, R., Spencer, A., et al. (2007). Randomized phase III study of pegylated liposomal doxorubicin plus bortezomib compared with bortezomib alone in relapsed or refractory multiple myeloma: Combination therapy improves time to progression. Journal of Clinical Oncology, 25(25), 3892–3901.PubMedCrossRefGoogle Scholar
  88. 88.
    Voorhees, P. M., Orlowski, R. Z., Mulkey, F., Watson, P., Geyer, S., Sanford, B. L., et al. (2015). Long-term outcomes for newly-diagnosed multiple myeloma patients treated with pegylated liposomal doxorubicin and bortezomib: Final results of CALGB (Alliance) 10301, a multicentre phase II study. British Journal of Haematology, 171(3), 373–377.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ravindran, J., Nair, H. B., Sung, B., Prasad, S., Tekmal, R. R., & Aggarwal, B. B. (2010). Thymoquinone poly (lactide-co-glycolide) nanoparticles exhibit enhanced anti-proliferative, anti-inflammatory, and chemosensitization potential. Biochemical Pharmacology, 79(11), 1640–1647.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Li, Z., Li, X., Cao, Z., Xu, Y., Lin, H., Zhao, Y., et al. (2012). Camptothecin nanocolloids based on N, N, N-trimethyl chitosan: Efficient suppression of growth of multiple myeloma in a murine model. Oncology Reports, 27(4), 1035–1040.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Badr, G., Al-Sadoon, M. K., El-Toni, A. M., & Daghestani, M. (2012). Walterinnesia aegyptia venom combined with silica nanoparticles enhances the functioning of normal lymphocytes through PI3K/AKT, NFkappaB and ERK signaling. Lipids in Health and Disease, 11(1), 27.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Sayed, D., Al-Sadoon, M. K., & Badr, G. (2012). Silica nanoparticles sensitize human multiple myeloma cells to snake (Walterinnesia aegyptia) venom-induced apoptosis and growth arrest. Oxidative Medicine and Cellular Longevity, 2012, 386286.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Elsadek, B., & Kratz, F. (2012). Impact of albumin on drug delivery–new applications on the horizon. Journal of Controlled Release, 157(1), 4–28.PubMedCrossRefGoogle Scholar
  94. 94.
    Yang, C., Wang, J., Chen, D., Chen, J., Xiong, F., Zhang, H., et al. (2013). Paclitaxel-Fe3O4 nanoparticles inhibit growth of CD138(−) CD34(−) tumor stem-like cells in multiple myeloma-bearing mice. International Journal of Nanomedicine, 8(1), 1439–1449.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Otsuka, H., Nagasaki, Y., & Kataoka, K. (2003). PEGylated nanoparticles for biological and pharmaceutical applications. Advanced Drug Delivery Reviews, 55(3), 403–419.PubMedCrossRefGoogle Scholar
  96. 96.
    Avgoustakis, K. (2004). Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: Preparation, properties and possible applications in drug delivery. Current Drug Delivery, 1(4), 321–333.PubMedCrossRefGoogle Scholar
  97. 97.
    Knop, K., Hoogenboom, R., Fischer, D., & Schubert, U. S. (2010). Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angewandte Chemie (International Ed. in English), 49(36), 6288–6308.CrossRefGoogle Scholar
  98. 98.
    Hatakeyama, H., Akita, H., & Harashima, H. (2011). A multifunctional envelope type nanodevice (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma. Advanced Drug Delivery Reviews, 63(3), 152–160.PubMedCrossRefGoogle Scholar
  99. 99.
    Valle, J. W., Armstrong, A., Newman, C., Alakhov, V., Pietrzynski, G., Brewer, J., et al. (2011). A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Investigational New Drugs, 29(5), 1029–1037.PubMedCrossRefGoogle Scholar
  100. 100.
    Matsumura, Y., Hamaguchi, T., Ura, T., Muro, K., Yamada, Y., Shimada, Y., et al. (2004). Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. British Journal of Cancer, 91(10), 1775–1781.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Tong, R., & Cheng, J. (2007). Anticancer polymeric nanomedicines. Polymer Reviews, 47(3), 345–381.CrossRefGoogle Scholar
  102. 102.
    Singer, J. W. (2005). Paclitaxel poliglumex (XYOTAX, CT-2103): A macromolecular taxane. Journal of Controlled Release, 109(1–3), 120–126.PubMedCrossRefGoogle Scholar
  103. 103.
    Young, C., Schluep, T., Hwang, J., & Eliasof, S. (2011). CRLX101 (formerly IT-101)-a novel nanopharmaceutical of camptothecin in clinical development. Current Bioactive Compounds, 7(1), 8–14.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Lammers, T., Kiessling, F., Hennink, W. E., & Storm, G. (2012). Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. Journal of Controlled Release, 161(2), 175–187.PubMedCrossRefGoogle Scholar
  105. 105.
    Tagami, T., Ernsting, M. J., & Li, S. D. (2011). Efficient tumor regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin. Journal of Controlled Release, 152(2), 303–309.PubMedCrossRefGoogle Scholar
  106. 106.
    Seetharamu, N., Kim, E., Hochster, H., Martin, F., & Muggia, F. (2010). Phase II study of liposomal cisplatin (SPI-77) in platinum-sensitive recurrences of ovarian cancer. Anticancer Research, 30(2), 541–545.PubMedGoogle Scholar
  107. 107.
    Clinical A phase I trial of nanoliposomal CPT-11 (NL CPT-11) in patients with recurrent high-grade gliomas. Retrieved from
  108. 108.
    Tardi, P., Johnstone, S., Harasym, N., Xie, S., Harasym, T., Zisman, N., et al. (2009). In vivo maintenance of synergistic cytarabine: Daunorubicin ratios greatly enhances therapeutic efficacy. Leukemia Research, 33(1), 129–139.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jayvadan K. Patel
    • 1
  • Anita P. Patel
    • 1
  1. 1.Nootan Pharmacy College, Faculty of PharmacySankalchand Patel UniversityVisnagarIndia

Personalised recommendations