Advertisement

Surface-Modified Lanthanide Nanomaterials for Drug Delivery

  • Nitya R. Chawda
  • S. K. Mahapatra
  • I. BanerjeeEmail author
Chapter

Abstract

The chapter highlights the importance and possibility of detrimental effects of lanthanide-based nanomaterials, surface capping, and toxicity. Lanthanide-based nanomaterials serve multimodality approach such as diagnosis and therapy. This speciality makes them superior over their other counterparts like transition metals and organic-based materials. The loose ions leached from the contrast agent used for magnetic resonance imaging (MRI) causes possibility of nephrotoxicity leading to nephrogenic systemic fibrosis (NSF). It also indulges the readers to understand synthesis mechanism for elongated mixed-phase rare-earth oxides and hydroxide nanostructures. The basic principle of transition and crystallization temperatures required for rare-earth-based oxide formation is specially highlighted and explained in detail using X-ray diffractometer (XRD), thermogravimetric analyzer (TGA), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR) data. Furthermore, the lanthanide nanorods have been employed as contrast agent in MRI and drug delivery studies. The promising results like longitudinal proton relaxivity (r1) value of 13.3 mM−1 s−1 and drug-loading capacity of 5-flurouracil are ~28% for FA-capped Gd2O3 nanorods in comparison to bare sample (~9%) that is best endowed to its unique structure and skillful capping. These advantages of well-capped FA-Gd2O3 nanorods are promising candidates for simultaneous bioimaging and drug delivery system due to the presence of FA over its surface. It will server further as potentially equipped candidate for clinical applications for targeted diagnosis and therapy which in combination is to be known as theranostics.

Keywords

Drug delivery Paramagnetic Contrast agent Nanomaterials Magnetic resonance imaging (MRI) 

References

  1. 1.
    Mattoussi, H., & Rotello, V. M. (2013). Inorganic nanoparticles in drug delivery. Advanced Drug Delivery Reviews, 65(5), 605–606.Google Scholar
  2. 2.
    Siegel, R. L., Miller, K. D., & Jemal, A. (2017). Cancer statistics, 2017. CA: A Cancer Journal for Clinicians, 67(1), 7–30.Google Scholar
  3. 3.
    Shen, J., Zhao, L., & Han, G. (2013). Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Advanced Drug Delivery Reviews, 65(5), 744–755.Google Scholar
  4. 4.
    Rizvi, S. A. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 26(1), 64–70.Google Scholar
  5. 5.
    Zhang, Y., Wei, W., Das, G. K., & Yang Tan, T. T. (2014). Engineering lanthanide-based materials for nanomedicine. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 20, 71–96.Google Scholar
  6. 6.
    Duan, C., Liang, L., Li, L., Zhang, R., & Xu, Z. P. (2018). Recent progress in upconversion luminescence nanomaterials for biomedical applications. Journal of Materials Chemistry B, 6(2), 192–209.Google Scholar
  7. 7.
    Opoku-Damoah, Y., Wang, R., Zhou, J., & Ding, Y. (2016). Versatile nanosystem-based cancer theranostics: Design inspiration and predetermined routing. Theranostics, 6(7), 986–1003.Google Scholar
  8. 8.
    Teo, R. D., Termini, J., & Gray, H. B. (2016). Lanthanides: Applications in cancer diagnosis and therapy. Journal of Medicinal Chemistry, 59(13), 6012–6024.Google Scholar
  9. 9.
    Ha-Thi, M.-H., Delaire, J. A., Michelet, V., & Leray, I. (2010). Sensitized emission of luminescent lanthanide complexes based on a phosphane oxide derivative. The Journal of Physical Chemistry-A, 114(9), 3264–3269.Google Scholar
  10. 10.
    Yang, D., Ma, P., Hou, Z., Cheng, Z., Li, C., & Lin, J. (2015). Current advances in lanthanide ion (Ln3+)-based upconversion nanomaterials for drug delivery. Chemical Society Reviews, 44(6), 1416–1448.Google Scholar
  11. 11.
    Kwon, O. S., Song, H. S., Conde, J., Kim, H. I., Artzi, N., & Kim, J. H. (2016). Dual-color emissive upconversion nanocapsules for differential cancer bioimaging in vivo. ACS Nano, 10(1), 1512–1521.Google Scholar
  12. 12.
    Shan, S.-N., Wang, X.-Y., & Jia, N.-Q. (2011). Synthesis of NaYF4:Yb3+, Er3+ upconversion nanoparticles in normal microemulsions. Nanoscale Research Letters, 6(1), 539.Google Scholar
  13. 13.
    Chen, G., Qiu, H., Prasad, P. N., & Chen, X. (2014). Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chemical Reviews, 114(10), 5161–5214.Google Scholar
  14. 14.
    Gao, W., Dong, J., Yan, X., Liu, L., Liu, J., & Zhang, W. (2017). An further enhancement in red upconversion emission in single LiYbF4:Ho3+ microparticle through codoping Ce3+ ions. Journal of Luminescence, 192, 513–519.Google Scholar
  15. 15.
    Xue, Z., Yi, Z., Li, X., Li, Y., Jiang, M., Liu, H., et al. (2017). Upconversion optical/magnetic resonance imaging-guided small tumor detection and in vivo tri-modal bioimaging based on high-performance luminescent nanorods. Biomaterials, 115, 90–103.Google Scholar
  16. 16.
    Li, X., Yi, Z., Xue, Z., Zeng, S., & Liu, H. (2017). Multifunctional BaYbF5:Gd/Er upconversion nanoparticles for in vivo tri-modal upconversion optical, X-ray computed tomography and magnetic resonance imaging. Materials Science and Engineering-C, 75, 510–516.Google Scholar
  17. 17.
    Dai, Y., Xiao, H., Liu, J., Yuan, Q., Ma, P., Yang, D., et al. (2013). In vivo multimodality imaging and cancer therapy by near-infrared light-triggered trans-platinum pro-drug-conjugated upconverison nanoparticles. Journal of the American Chemical Society, 135(50), 18920–18929.Google Scholar
  18. 18.
    Fedoryshin, L. L., Tavares, A. J., Petryayeva, E., Doughan, S., & Krull, U. J. (2014). Near-infrared-triggered anticancer drug release from upconverting nanoparticles. ACS Applied Materials & Interfaces, 6(16), 13600–13606.Google Scholar
  19. 19.
    Chowdhuri, A. R., Laha, D., Pal, S., Karmakar, P., & Sahu, S. K. (2016). One-pot synthesis of folic acid encapsulated upconversion nanoscale metal organic frameworks for targeting, imaging and pH responsive drug release. Dalton Transactions, 45(45), 18120–18132.Google Scholar
  20. 20.
    Ma, J., Huang, P., He, M., Pan, L., Zhou, Z., Feng, L., et al. (2012). Folic acid-conjugated LaF3:Yb,Tm@SiO2 nanoprobes for targeting dual-modality imaging of upconversion luminescence and X-ray computed tomography. The Journal of Physical Chemistry-B, 116(48), 14062–14070.Google Scholar
  21. 21.
    Walker, D. K. (2004). The use of pharmacokinetic and pharmacodynamic data in the assessment of drug safety in early drug development. British Journal of Clinical Pharmacology, 58(6), 601–608.Google Scholar
  22. 22.
    Bashir, S., Teo, Y. Y., Naeem, S., Ramesh, S., & Ramesh, K. (2017). Correction: pH responsive N-succinyl chitosan/poly (acrylamide-co-acrylic acid) hydrogels and in vitro release of 5-fluorouracil. PLoS One, 12(9), e0185505.Google Scholar
  23. 23.
    Toloudi, M., Apostolou, P., & Papasotiriou, I. (2015). Efficacy of 5-FU or oxaliplatin monotherapy over combination therapy in colorectal cancer. Journal of Cancer Therapy, 6, 345–355.Google Scholar
  24. 24.
    Rejinold, N. S., Muthunarayanan, M., Chennazhi, K. P., Nair, S. V., & Jayakumar, R. (2011). 5-Fluorouracil loaded fibrinogen nanoparticles for cancer drug delivery applications. International Journal of Biological Macromolecules, 48(1), 98–105.Google Scholar
  25. 25.
    Bagheri, A., Arandiyan, H., Boyer, C., & Lim, M. (2016). Lanthanide-doped upconversion nanoparticles: Emerging intelligent light-activated drug delivery systems. Advancement of Science, 3(7), 1500437.Google Scholar
  26. 26.
    Xing, P., Chu, X., Ma, M., Li, S., & Hao, A. (2014). Supramolecular gel from folic acid with multiple responsiveness, rapid self-recovery and orthogonal self-assemblies. Physical Chemistry Chemical Physics, 16(18), 8346–8359.Google Scholar
  27. 27.
    Sen, G. S., Kuzelka, J., Singh, P., Lewis, W. G., Manchester, M., & Finn, M. G. (2005). Accelerated bioorthogonal conjugation: A practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconjugate Chemistry, 16(6), 1572–1579.Google Scholar
  28. 28.
    Elnakat, H., & Ratnam, M. (2004). Distribution, functionality and gene regulation of folate receptor isoforms: Implications in targeted therapy. Advanced Drug Delivery Reviews, 56(8), 1067–1084.Google Scholar
  29. 29.
    Zhang, X., Ge, J., Xue, Y., Lei, B., Yan, D., Li, N., et al. (2015). Controlled synthesis of ultrathin lanthanide oxide nanosheets and their promising pH-controlled anticancer drug delivery. Chemistry-A European Journal, 21(34), 11954–11960.Google Scholar
  30. 30.
    Rogosnitzky, M., & Branch, S. (2016). Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. Biometals, 29, 365–376.Google Scholar
  31. 31.
    FDA. (2015). FDA evaluating the risk of brain deposits with repeated use of gadolinium-based contrast agents for magnetic resonance imaging (MRI), 7–10.Google Scholar
  32. 32.
    FDA Drug Safety. (2017, May 22). FDA safety announcement-FDA identifies no harmful effects to date with brain retention of gadolinium-based contrast agents for MRIs: Review to continue, 2–5.Google Scholar
  33. 33.
    FDA. (2017). FDA warns that gadolinium-based contrast agents (GBCAs) are retained in the body; requires new class warnings, 1–4.Google Scholar
  34. 34.
    Cho, M., Sethi, R., Ananta Narayanan, J. S., Lee, S. S., Benoit, D. N., Taheri, N., et al. (2014). Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging. Nanoscale, 6(22), 13637–13645.Google Scholar
  35. 35.
    Ranga, A., Agarwal, Y., & Garg, K. J. (2017). Gadolinium based contrast agents in current practice: Risks of accumulation and toxicity in patients with normal renal function. Indian Journal of Radiology Imaging, 27(2), 141–147.Google Scholar
  36. 36.
    Aime, S., & Caravan, P. (2009). Biodistribution of gadolinium-based contrast agents, including gadolinium deposition. Journal of Magnetic Resonance Imaging, 30(6), 1259–1267.Google Scholar
  37. 37.
    Wang, J., Li, W., & Zhu, J. (2014). Encapsulation of inorganic nanoparticles into block copolymer micellar aggregates: Strategies and precise localization of nanoparticles. Polymer, 55(5), 1079–1096.Google Scholar
  38. 38.
    Kim, C. R., Baeck, J. S., Chang, Y., Bae, J. E., Chae, K. S., & Lee, G. H. (2014). Ligand-size dependent water proton relaxivities in ultrasmall gadolinium oxide nanoparticles and in vivo T1 MR images in a 1.5 T MR field. Physical Chemistry Chemical Physics, 16(37), 19866–19873.Google Scholar
  39. 39.
    Vairapperumal, T., Saraswathy, A., Ramapurath, J. S., Kalarical Janardhanan, S., & Balachandran Unni, N. (2016). Catechin tuned magnetism of Gd-doped orthovanadate through morphology as T1-T2 MRI contrast agents. Scientific Reports, 6(1), 34976.Google Scholar
  40. 40.
    Tegafaw, T., Xu, W., Lee, S. H., Chae, K. S., Cha, H., Chang, Y., et al. (2016). Ligand-size and ligand-chain hydrophilicity effects on the relaxometric properties of ultrasmall Gd2O3 nanoparticles. AIP Advances, 6(6), 065114.Google Scholar
  41. 41.
    Cao, Y., Xu, L., Kuang, Y., Xiong, D., & Pei, R. (2017). Gadolinium-based nanoscale MRI contrast agents for tumor imaging. Journal of Materials Chemistry B, 5(19), 3431–3461.Google Scholar
  42. 42.
    Ma, X., Zhao, Y., & Liang, X.-J. (2011). Theranostic nanoparticles engineered for clinic and pharmaceutics. Accounts of Chemical Research, 44(10), 1114–1122.Google Scholar
  43. 43.
    Hemmer, E., Venkatachalam, N., Hyodo, H., & Soga, K. (2012). The role of pH in PEG-b-PAAc modification of gadolinium oxide nanostructures for biomedical applications. Advances in Materials Science and Engineering, 2012, 1–15.Google Scholar
  44. 44.
    Lee,K., Bae, Y., & Byeon, S. (2010). pH Dependent Hydrothermal Synthesis and Photoluminescence of Gd2O3:Eu Nanostructures. Nanowires Science and Technology Edited by Nicoleta Lupu,  https://doi.org/10.5772/39489.
  45. 45.
    Majeed, S., & Shivashankar, S. A. (2014). Rapid, microwave-assisted synthesis of Gd2O3 and Eu:Gd2O3 nanocrystals: Characterization, magnetic, optical and biological studies. Journal of Materials Chemistry B, 2(34), 5585.Google Scholar
  46. 46.
    Mekuria, S. L., Debele, T. A., & Tsai, H. (2017). Encapsulation of gadolinium oxide nanoparticle (Gd2O3) contrasting agents in PAMAM Dendrimer templates for enhanced magnetic resonance imaging in vivo. ACS Applied Materials & Interfaces, 9(8), 6782–6795.Google Scholar
  47. 47.
    Rocha, L. A., Schiavon, M. A., Ribeiro, S. J. L., Gonçalves, R. R., & Ferrari, J. L. (2015). Eu3+-doped SiO2–Gd2O3 prepared by the sol–gel process: Structural and optical properties. Journal of Sol-Gel Science and Technology, 76(2), 260–270.Google Scholar
  48. 48.
    Hazarika, S., & Mohanta, D. (2016). Oriented attachment (OA) mediated characteristic growth of Gd2O3 nanorods from nanoparticle seeds. Journal of Rare Earths, 34(2), 158–165.Google Scholar
  49. 49.
    Kang, J., Min, B., & Sohn, Y. (2015). Synthesis and characterization of Gd(OH)3 and Gd2O3 nanorods. Ceramics International, 41(1), 1243–1248.Google Scholar
  50. 50.
    Chaudhary, S., Kumar, S., Umar, A., Singh, J., Rawat, M., & Mehta, S. K. (2017). Europium-doped gadolinium oxide nanoparticles: A potential photoluminescencent probe for highly selective and sensitive detection of Fe3+ and Cr3+ ions. Sensors and Actuators B: Chemical, 243, 579–588.Google Scholar
  51. 51.
    Barge, A., Cravotto, G., Gianolio, E., & Fedeli, F. (2006). How to determine free Gd and free ligand in solution of Gd chelates: A technical note. Contrast Media & Molecular Imaging, 1(5), 184–188.Google Scholar
  52. 52.
    Zhang, S., Jiang, Z., Liu, X., Zhou, L., & Peng, W. (2013). Possible gadolinium ions leaching and MR sensitivity over-estimation in mesoporous silica-coated upconversion nanocrystals. Nanoscale, 5(17), 8146.Google Scholar
  53. 53.
    Chaudhary, A., Gupta, A., & Nandi, C. K. (2015). Anisotropic gold nanoparticles for the highly sensitive colorimetric detection of glucose in human urine. RSC Advances, 5(51), 40849–40855.Google Scholar
  54. 54.
    Xu, W., Miao, X., Oh, I., Chae, K. S., Cha, H., Chang, Y., et al. (2016). Dextran-coated ultrasmall Gd 2O3 nanoparticles as potential T1 MRI contrast agent. ChemistrySelect, 1(19), 6086–6091.Google Scholar
  55. 55.
    Vahdatkhah, P., Madaah Hosseini, H. R., Khodaei, A., Montazerabadi, A. R., Irajirad, R., Oghabian, M. A., et al. (2015). Rapid microwave-assisted synthesis of PVP-coated ultrasmall gadolinium oxide nanoparticles for magnetic resonance imaging. Chemical Physics, 453–454, 35–41.Google Scholar
  56. 56.
    Du, P.-Y., Gu, W., & Liu, X. (2016). A three-dimensional Nd(III)-based metal–organic framework as a smart drug carrier. New Journal of Chemistry, 40(11), 9017–9020.Google Scholar
  57. 57.
    Leelakanok, N., Geary, S., & Salem, A. (2018). Fabrication and use of PLGA-based formulations designed for modified release of 5-fluorouracil. Journal of Pharmaceutical Sciences, 107(2), 513–528.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nitya R. Chawda
    • 1
  • S. K. Mahapatra
    • 2
  • I. Banerjee
    • 1
    Email author
  1. 1.School of Nano SciencesCentral University of GujaratGandhi NagarIndia
  2. 2.Department of Physical SciencesCentral University of PunjabBhatindaIndia

Personalised recommendations