Advertisement

Surface Modification of Gold Nanoparticles for Targeted Drug Delivery

  • Benson Peter Mugaka
  • Yihui Hu
  • Yu Ma
  • Ya DingEmail author
Chapter

Abstract

Gold nanoparticles (AuNPs) are the most widely studied and used inorganic nanoparticles in biomedical researches and applications, due to their controllable shape and size, biological inertia, and optical and photothermal therapeutic properties. Besides the shape and size, surface property is also a critical factor that influences the performance of AuNPs in vivo, especially for targeted drug delivery using AuNPs as the carriers. Two approaches, noncovalent and covalent interactions, are commonly employed to modify the surface of AuNPs. Each of them has advantages and disadvantages. In this chapter, we focus on these two kinds of surface modification methods and their applications in regulating the properties and performance of AuNP-based nanosystems for targeted drug delivery. It provides valuable reference and guide to implement modification of the surface for nanomaterials and realize the unique functions in diagnosis and treatment.

Keywords

Gold nanoparticles Surface modification Drug delivery Specific targeting 

References

  1. 1.
    Yeh, Y.-C., Creran, B., & Rotello, V. M. (2012). Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale, 4, 1871–1880.Google Scholar
  2. 2.
    Biju, V. P. (2014). Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chemical Society Reviews, 45, 744–764.Google Scholar
  3. 3.
    Giljohann, D. A., Seferos, D. S., Daniel, W. L., Massich, M. D., Patel, P. C., & Mirkin, C. A. (2010). Gold nanoparticles for biology and mdicine. Angewandte Chemie, International Edition, 49, 3280–3294.Google Scholar
  4. 4.
    Saha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold nanoparticles in chemical and biological sensing. Chemical Reviews, 112, 2739–2779.Google Scholar
  5. 5.
    Li, N., Zhao, P., & Astruc, D. (2014). Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity. Angewandte Chemie, International Edition, 53, 1756–1789.Google Scholar
  6. 6.
    Perrault, S. D., & Chan, W. C. W. (2009). Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. Journal of the American Chemical Society, 131, 17042–17043.Google Scholar
  7. 7.
    Chen, T., Xu, S., Zhao, T., Zhu, L., Wei, D., Li, Y., Zhang, H., & Zhao, C. (2012). Gold nanocluster-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. ACS Applied Materials and Interfaces, 4, 5766–5774.Google Scholar
  8. 8.
    He, L., Chen, T., You, Y., Hu, H., Zheng, W., Kwong, W.-L., Zou, T., & Che, C.-M. (2014). A cancer-targeted nano system for delivery of gold (III) complexes: Enhanced selectivity and apoptosis-inducing efficacy of a gold (III) porphyrin complex. Angewandte Chemie, International Edition, 53, 12532–12536.Google Scholar
  9. 9.
    Jang, H., Ryoo, S.-R., Kostarelos, K., Hanb, S. W., & Mina, D.-H. (2013). The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores. Biomaterials, 34, 3503–3510.Google Scholar
  10. 10.
    Verma, H. N., Singh, P., & Chavan, R. M. (2014). Gold nanoparticle: Synthesis and characterization. Veterinary World, 7, 72–77.Google Scholar
  11. 11.
    Brown, S. D., Nativo, P., Smith, J.-A., Stirling, D., Edwards, P. R., Venugopal, B., Flint, D. J., Plumb, J. A., Graham, D., & Wheate, N. J. (2010). Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. Journal of the American Chemical Society, 132, 4678–4684.Google Scholar
  12. 12.
    Yeh, Y.-C., Creran, B., & Rotello, V. M. (2012). Gold nanoparticles: Preparation, properties, and applications in bio nanotechnology. Nanoscale, 4, 1871–1880.Google Scholar
  13. 13.
    Park, J., Brust, T. F., Lee, H. J., Lee, S. C., Watts, V. J., & Yeo, Y. (2014). Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano, 8, 3347–3356.Google Scholar
  14. 14.
    Adams, S. A., Hauser, J. L., Allen, A. C., Lindquist, K. P., Ramirez, A. P., Oliver, S., & Zhang, J. Z. (2018). Fe3O4@SiO2 nanoparticles functionalized with gold and poly(vinylpyrrolidone) for bio-separation and sensing applications. ACS Applied Nano Materials, 1, 1406–1412.Google Scholar
  15. 15.
    Hu, J., Wu, T., Zhang, G., & Liu, S. (2012). Efficient synthesis of single gold nanoparticle hybrid amphiphilic triblock copolymers and their controlled self-assembly. Journal of the American Chemical Society, 134, 7624–7627.Google Scholar
  16. 16.
    Ghiassian, S., Gobbo, P., & Workentin, M. S. (2015). Water-soluble maleimide-modified gold nanoparticles (AuNPs) as a platform for cycloaddition reactions. European Journal of Organic Chemistry, (24), 5438–5447.Google Scholar
  17. 17.
    Kalies, S., Gentemann, L., Schomaker, M., Heinemann, D., Ripken, T., & Meyer, H. (2014). Surface modification of silica particles with gold nanoparticles as an augmentation of gold nanoparticle mediated laser perforation. Biomedical Optics Express, 5, 2686–2696.Google Scholar
  18. 18.
    Li, X., Guo, J., Asong, J., Wolfert, M. A., & Boons, G.-J. (2011). Multifunctional surface modification of gold-stabilized nanoparticles by bioorthogonal reactions. Journal of the American Chemical Society, 133, 11147–11153.Google Scholar
  19. 19.
    Lipka, J., Behnke, M. S., Sperling, R. A., Wenk, A., Takenaka, S., Schleh, C., Kissel, T., Parak, W. J., & Kreyling, W. G. (2010). Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials, 31, 6574–6581.Google Scholar
  20. 20.
    Kodiyan, A., Silva, E. A., Kim, J., Aizenberg, M., & Mooney, D. J. (2012). Surface modification with alginate-derived polymers for stable, protein-repellent, long-circulating gold nanoparticles. ACS Nano, 6, 4796–4805.Google Scholar
  21. 21.
    Doane, T. L., & Burda, C. (2012). The unique role of nanoparticles in nanomedicine: Imaging, drug delivery and therapy. Chemical Society Reviews, 41, 2885–2911.Google Scholar
  22. 22.
    Caragheorgheopol, A., & Chechik, V. (2008). Mechanistic aspects of ligand exchange in au nanoparticles. Physical Chemistry Chemical Physics, 10, 5029–5041.Google Scholar
  23. 23.
    Veiseh, O., Kievit, F. M., Gunn, J. W., Ratner, B. D., & Zhanga, M. (2009). A ligand-mediated nanovector for targeted gene delivery and transfection in cancer cells. Biomaterials, 30, 649–657.Google Scholar
  24. 24.
    Chen, Y., Xianyu, Y., & Jiang, X. (2017). Surface modification of gold nanoparticles with small molecules for biochemical analysis. Accounts of Chemical Research, 50, 310–319.Google Scholar
  25. 25.
    Paciotti, G. F., Kingston, F. G. I., & Tamarkin, L. (2006). Colloidal gold nanoparticles: A novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Development Research, 67, 47–54.Google Scholar
  26. 26.
    Ding, Y., Jiang, Z., Saha, K., Kim, C. S., Kim, S. T., Landis, R. F., & Rotello, V. M. (2014). Gold nanoparticles for nucleic acid delivery. Molecular Therapy, 22, 1075–1083.Google Scholar
  27. 27.
    Liang, J.-J., Zhou, Y.-Y., Wu, J., & Ding, Y. (2014). Gold nanoparticle-based drug delivery platform for antineoplastic chemotherapy. Current Drug Metabolism, 15, 620–631.Google Scholar
  28. 28.
    Bera, K., Maiti, S., Maity, M., Mandal, C., & Maiti, N. C. (2018). Porphyrin−gold nanomaterial for efficient drug delivery to cancerous cells. ACS Omega, 3, 4602–4619.Google Scholar
  29. 29.
    Khandelia, R., Jaiswal, A., Ghosh, S. S., & Chattopadhyay, A. (2013). Gold nanoparticle–protein agglomerates as versatile nanocarriers for drug delivery. Small, 9, 3494–3505.Google Scholar
  30. 30.
    Guo, S., Huang, Y., Jiang, Q., Sun, Y., Deng, L., Liang, Z., Du, Q., Xing, J., Zhao, Y., Wang, P. C., Dong, A., & Liang, X.-J. (2010). Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano, 4, 5505–5511.Google Scholar
  31. 31.
    Fytianos, K., Rodriguez-Lorenzo, L., Clift, M. J., Blank, F., Vanhecke, D., von Garnier, C., Petri-Fink, A., & Rothen-Rutishauser, B. (2015). Uptake efficiency of surface modified gold nanoparticles does not correlate with functional changes and cytokine secretion in human dendritic cells in vitro. Nanomedicine, 11, 633–644.Google Scholar
  32. 32.
    Schäffler, M., Sousa, F., Wenk, A., Sitia, L., Hirn, S., Schleh, C., Haberl, N., Violatto, M., Canovi, M., Andreozzi, P., Salmona, M., Bigini, P., Kreyling, W. G., & Krol, S. (2014). Blood protein coating of gold nanoparticles as potential tool for organ targeting. Biomaterials, 35, 3455–3466.Google Scholar
  33. 33.
    Alexander, C. M., Hamner, K. L., Maye, M. M., & Dabrowiak, J. C. (2014). Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery. Bioconjugate Chemistry, 25, 1261–1271.Google Scholar
  34. 34.
    Heuer-Jungemann, A., Kirkwood, R., El-Sagheer, A. H., Brown, T., & Kanaras, A. G. (2013). Copper-free click chemistry as an emerging tool for the programmed ligation of DNA-functionalised gold nanoparticles. Nanoscale, 5, 7209–7212.Google Scholar
  35. 35.
    Kyriazi, M.-E., Giust, D., El-Sagheer, A. H., Lackie, P. M., Muskens, O. L., Brown, T., & Kanaras, A. G. (2018). Multiplexed mRNA sensing and combinatorial-targeted drug delivery using DNA-gold nanoparticle dimers. ACS Nano, 12, 3333–3340.Google Scholar
  36. 36.
    Roca, M., & Haes, A. J. (2008). Probing cells with noble metal nanoparticle aggregates. Nanomedicine UK, 3, 555–565.Google Scholar
  37. 37.
    Chen, W., He, S., Pan, W. Y., Jin, Y., Zhang, W., & Jiang, X. Y. (2010). Strategy for the modification of electrospun fibers that allows diverse functional groups for biomolecular entrapment. Chemistry of Materials, 22, 6212–6214.Google Scholar
  38. 38.
    Liu, D. B., Qu, W. S., Chen, W. W., Zhang, W., Wang, Z., & Jiang, X. Y. (2010). Highly sensitive, colorimetric detection of mercury (II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Analytical Chemistry, 82, 9606–9610.Google Scholar
  39. 39.
    Prisner, L., Bohn, N., Hahn, U., & Mews, A. (2017). Size dependent targeted delivery of gold nanoparticles modified with the IL-6R-specific aptamer AIR-3A to IL-6R-carrying cells. Nanoscale, 9, 14486–14498.Google Scholar
  40. 40.
    Dekiwadia, C. D., Lawrie, A. C., & Fecondo, J. V. (2012). Peptide-mediated cell penetration and targeted delivery of gold nanoparticles into lysosomes. Journal of Peptide Science, 18, 527–534.Google Scholar
  41. 41.
    Frigell, J., García, I., Gómez-Vallejo, V., Llop, J., & Penadés, S. (2014). 68Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: Preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. Journal of the American Chemical Society, 136, 449–457.Google Scholar
  42. 42.
    Bao, Q.-Y., Geng, D.-D., Xue, J.-W., Zhou, G., Gu, S.-Y., Ding, Y., & Zhang, C. (2013). Glutathione-mediated drug release from tiopronin-conjugated gold nanoparticles for acute liver injury therapy. International Journal of Pharmaceutics, 446, 112–118.Google Scholar
  43. 43.
    Ding, Y., Zhou, Y.-Y., Chen, H., Geng, D.-D., Wu, D.-Y., Hong, J., Shen, W.-B., Hang, T.-J., & Zhang, C. (2013). The performance of thiol-terminated PEG-paclitaxel-conjugated gold nanoparticles. Biomaterials, 34, 10217–10227.Google Scholar
  44. 44.
    Gao, Y.-Y., Chen, H., Zhou, Y.-Y., Wang, L.-T., Hou, Y., Xia, X.-H., & Ding, Y. (2017). Intraorgan targeting of gold conjugates for precise liver cancer treatment. ACS Applied Materials and Interfaces, 9, 31458–31468.Google Scholar
  45. 45.
    Wu, D.-Y., Wang, H.-S., Hou, X.-S., Chen, H., Ma, Y., Hou, Y., Hong, J., & Ding, Y. (2018). Effects of gold core size on regulating the performance of doxorubicin-conjugated gold nanoparticles. Nano Research, 11, 3396–3410.Google Scholar
  46. 46.
    Cui, T., Liang, J.-J., Chen, H., Geng, D.-D., Jiao, L., Yang, J.-Y., Qian, H., Zhang, C., & Ding, Y. (2017). The Performance of doxorubicin-conjugated gold nanoparticles: Regulation of drug location. ACS Applied Materials and Interfaces, 9, 8569–8580.Google Scholar
  47. 47.
    Ruan, S., Yuan, M., Zhang, L., Hu, G., Chen, J., Cun, X., Zhang, Q., Yang, Y., He, Q., & Gao, H. (2015). Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials, 37, 425–435.Google Scholar
  48. 48.
    Gibson, J. D., Khanal, B. P., & Zubarev, E. R. (2007). Paclitaxel-functionalized gold nanoparticles. Journal of the American Chemical Society, 129, 11653–11661.Google Scholar
  49. 49.
    Tan, J., Cho, T. J., Tsai, D.-H., Liu, J., Pettibone, J. M., You, R., Hackley, V. A., & Zachariah, M. R. (2018). Surface modification of cisplatin-complexed gold nanoparticles and its influence on colloidal stability, drug loading, and drug release. Langmuir, 34, 154–163.Google Scholar
  50. 50.
    Jang, H., Ryoo, S.-R., Kostarelos, K., Han, S. W., & Min, D.-H. (2013). The effective nuclear delivery of doxorubicin from dextran-coated gold nanoparticles larger than nuclear pores. Biomaterials, 34, 3503–3510.Google Scholar
  51. 51.
    Hua, C., Zhang, W. H., De Almeida, S. R., Ciampi, S., Gloria, D., Liu, G., Harper, J. B., & Gooding, J. J. (2012). A novel route to copper (II) detection using ‘click’ chemistry-induced aggregation of gold nanoparticles. Analyst, 137, 82–86.Google Scholar
  52. 52.
    Hudlikar, M. S., Li, X., Gagarinov, I. A., Kolishetti, N., Wolfert, M. A., & Boons, G.-J. (2016). Controlled multi-functionalization facilitates targeted delivery of nanoparticles to cancer cells. Chemistry, 22, 1415–1423.Google Scholar
  53. 53.
    Finetti, C., Sola, L., Pezzullo, M., Prosperi, D., Colombo, M., Riva, B., Avvakumova, S., Morasso, C., Picciolini, S., & Chiari, M. (2016). Click chemistry immobilization of antibodies on polymer coated gold nanoparticles. Langmuir, 32, 7435–7441.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Benson Peter Mugaka
    • 1
  • Yihui Hu
    • 1
  • Yu Ma
    • 1
  • Ya Ding
    • 1
    Email author
  1. 1.Department of Pharmaceutical AnalysisChina Pharmaceutical UniversityNanjingChina

Personalised recommendations