Surface Modification of Nanoparticles for Targeted Drug Delivery

  • Param Patel
  • Anas Hanini
  • Achal Shah
  • Dhruv Patel
  • Shyam Patel
  • Priyanka Bhatt
  • Yashwant V PathakEmail author


Over the course of recent years, nanoparticles have been the center of attention used to treat many health related diseases. Nanoparticles are used due to it being efficient and having the ability to overcome certain biological barrier such as tumor, malignant melanoma, and treating HIV. Nanoparticles are known to have many different manipulating structures and characteristics which gives these particles a huge advantage in treating cancer. Nanoparticles are also used in tumor suppression due to their extraordinary ability of modifying their cell surface. One of the other great advantages of nanoparticles is to treat malignant melanoma. Two of the main components used in malignant melanoma therapy is poly(ε-caprolactone) (PCL) and poly(ethylene glycol) (PEG). Both components being FDA approved, have extraordinary effects in drug delivery through nanotechnology if used in a conjugated manner. One of the barriers faced in malignant melanoma therapy is losing the ability to encapsulate and retain a drug if ligands on the surface adjust the chemical properties of the polymer, which can be overcome by the use of dopamine. Nanoparticles have been greatly advantageous in breaking through barrier of successful HIV therapy. To treat this retroviral disease, the use of solid lipid nanoparticles is made due to it being able to improve the long-term stability of colloidal nanoparticles.


Nanoparticles Surface modification Tumor specific delivery Quantum dots Metallic nanoparticles 


  1. 1.
    Chattopadhyay, S., Dash, S. K., Ghosh, T., Das, D., Pramanik, P., & Roy, S. (2013). Surface modification of cobalt oxide nanoparticles using phosphonomethyl iminodiacetic acid followed by folic acid: A biocompatible vehicle for targeted anticancer drug delivery. Cancer Nanotechnology, 4, 103–116.CrossRefGoogle Scholar
  2. 2.
    Parodi, A., Haddix, S. G., Taghipour, N., Scaria, S., Taraballi, F., Cevenini, A., Yazdi, I. K., Corbo, C., Palomba, R., Khaled, S. Z., et al. (2014). Bromelain surface modification increases the diffusion of silica nanoparticles in the tumor extracellular matrix. ACS Nano, 8, 9874–9883.CrossRefGoogle Scholar
  3. 3.
    Xiong, W., Peng, L., Chen, H., & Li, Q. (2015). Surface modification of mpeg-b-pcl-based nanoparticles via oxidative self-polymerization of dopamine for malignant melanoma therapy. International Journal of Nanomedicine, 10, 2985–2996.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Bhatt, P., Lalani, R., Vhora, I., Patil, S., Amrutiya, J., Misra, A., & Mashru, R. (2018). Liposomes encapsulating native and cyclodextrin enclosed paclitaxel: Enhanced loading efficiency and its pharmacokinetic evaluation. International Journal of Pharmaceutics, 536, 95–107.CrossRefGoogle Scholar
  5. 5.
    Hemal Tandel, P. B., Jain, K., Shahiwala, A., & Misra, A. (2019). Vitro and in-vivo tools in emerging drug delivery scenario: Challenges and updates. In A. E. Misra & A. Shahiwala (Eds.), In-vitro and in-vivo tools in drug delivery research for optimum clinical outcomes. Boca Raton: CRC.Google Scholar
  6. 6.
    Shegokar, R., & Singh, K. K. (2012). Preparation, characterization and cell based delivery of stavudine surface modified lipid nanoparticles. Journal of Nanomedicine and Biotherapeutic Discovery, 2, 105. Scholar
  7. 7.
    Patel, J., Amrutiya, J., Bhatt, P., Javia, A., Jain, M., & Misra, A. (2018). Targeted delivery of monoclonal antibody conjugated docetaxel loaded plga nanoparticles into egfr overexpressed lung tumour cells. Journal of Microencapsulation, 35, 204–217.CrossRefGoogle Scholar
  8. 8.
    Yewale, C., Baradia, D., Patil, S., Bhatt, P., Amrutiya, J., Gandhi, R., Kore, G., & Misra, A. (2018). Docetaxel loaded immunonanoparticles delivery in EGFR overexpressed breast carcinoma cells. Journal of Drug Delivery Science and Technology, 45, 334–345.CrossRefGoogle Scholar
  9. 9.
    Bhatt, P., Lalani, R., Mashru, R., & Misra, A. (2016). Abstract 2065: Anti-FSHR antibody fab’ fragment conjugated immunoliposomes loaded with cyclodextrin-paclitaxel complex for improved in vitro efficacy on ovarian cancer cells. Cancer Research, 76, 2065.CrossRefGoogle Scholar
  10. 10.
    Bhatt, P., Vhora, I., Patil, S., Amrutiya, J., Bhattacharya, C., Misra, A., & Mashru, R. (2016). Role of antibodies in diagnosis and treatment of ovarian cancer: Basic approach and clinical status. Journal of Controlled Release: Official Journal of the Controlled Release Society, 226, 148–167.CrossRefGoogle Scholar
  11. 11.
    Ahmad, I. Z., Kuddus, M., Tabassum, H., Ahmad, A., & Mabood, A. (2017). Advancements in applications of surface modified nanomaterials for cancer theranostics. Current Drug Metabolism, 18, 983–999.CrossRefGoogle Scholar
  12. 12.
    Knop, K., Stumpf, S., & Schubert, U. S. (2013). Drugs as matrix to detect their own drug delivery system of peg-b-pcl block copolymers in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Communications in Mass Spectrometry: RCM, 27, 2201–2212.CrossRefGoogle Scholar
  13. 13.
    Morcos, B., Lecante, P., Morel, R., Haumesser, P.-H., & Santini, C. C. (2018). Magnetic, structural, and chemical properties of cobalt nanoparticles synthesized in ionic liquids. Langmuir, 34, 7086–7095.CrossRefGoogle Scholar
  14. 14.
    Chattopadhyay, S., Chakraborty, S. P., Laha, D., Baral, R., Pramanik, P., & Roy, S. (2012). Surface-modified cobalt oxide nanoparticles: New opportunities for anti-cancer drug development. Cancer Nanotechnology, 3, 13–23.CrossRefGoogle Scholar
  15. 15.
    Salazar, M. D., & Ratnam, M. (2007). The folate receptor: What does it promise in tissue-targeted therapeutics? Cancer Metastasis Reviews, 26, 141–152.CrossRefGoogle Scholar
  16. 16.
    Antony, A. C. (1996). Folate receptors. Annual Review of Nutrition, 16, 501–521.CrossRefGoogle Scholar
  17. 17.
    Chobotova, K., Vernallis, A. B., & Majid, F. A. (2010). Bromelain’s activity and potential as an anti-cancer agent: Current evidence and perspectives. Cancer Letters, 290, 148–156.CrossRefGoogle Scholar
  18. 18.
    Pavan, R., Jain, S., Shraddha, & Kumar, A. (2012). Properties and therapeutic application of bromelain: A review. Biotechnology Research International, 2012, 6.CrossRefGoogle Scholar
  19. 19.
    Rathnavelu, V., Alitheen, N. B., Sohila, S., Kanagesan, S., & Ramesh, R. (2016). Potential role of bromelain in clinical and therapeutic applications. Biomedical Reports, 5, 283–288.CrossRefGoogle Scholar
  20. 20.
    Mynott, T. L., Ladhams, A., Scarmato, P., & Engwerda, C. R. B. (1999). From pineapple stems, proteolytically blocks activation of extracellular regulated kinase-2 in t cells. Journal of Immunology, 163, 2568–2575.Google Scholar
  21. 21.
    Orsini, R. A. (2006). Bromelain. Plastic and Reconstructive Surgery, 118, 1640–1644.CrossRefGoogle Scholar
  22. 22.
    Barbé, C., Bartlett, J., Kong, L., Finnie, K., Lin, H. Q., Larkin, M., Calleja, S., Bush, A., & Calleja, G. (1959-1966). Silica particles: A novel drug-delivery system. Advanced Materials, 2004, 16.Google Scholar
  23. 23.
    Ma, B., He, L., You, Y., Mo, J., & Chen, T. (2018). Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy. Drug Delivery, 25, 293–306.CrossRefGoogle Scholar
  24. 24.
    Kanapathipillai, M., Brock, A., & Ingber, D. E. (2014). Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Advanced Drug Delivery Reviews, 79-80, 107–118.CrossRefGoogle Scholar
  25. 25.
    Villegas, M. R., Baeza, A., & Vallet-Regí, M. (2015). Hybrid collagenase nanocapsules for enhanced nanocarrier penetration in tumoral tissues. ACS Applied Materials and Interfaces, 7, 24075–24081.CrossRefGoogle Scholar
  26. 26.
    Vhora, I., Patil, S., Bhatt, P., Gandhi, R., Baradia, D., & Misra, A. (2014). Receptor-targeted drug delivery: Current perspective and challenges. Therapeutic Delivery, 5, 1007–1024.CrossRefGoogle Scholar
  27. 27.
    Zhang, W., He, J., Liu, Z., Ni, P., & Zhu, X. (2010). Biocompatible and ph-responsive triblock copolymer mpeg-b-pcl-b-pdmaema: Synthesis, self-assembly, and application. Journal of Polymer Science Part A: Polymer Chemistry, 48, 1079–1091.CrossRefGoogle Scholar
  28. 28.
    Li, F., Meng, J., Ye, J., Yang, B., Tian, Q., & Deng, C. (2014). Surface modification of pes ultrafiltration membrane by polydopamine coating and poly(ethylene glycol) grafting: Morphology, stability, and anti-fouling. Desalination, 344, 422–430.CrossRefGoogle Scholar
  29. 29.
    Yang, K., Lee, J. S., Kim, J., Lee, Y. B., Shin, H., Um, S. H., Kim, J. B., Park, K. I., Lee, H., & Cho, S. W. (2012). Polydopamine-mediated surface modification of scaffold materials for human neural stem cell engineering. Biomaterials, 33, 6952–6964.CrossRefGoogle Scholar
  30. 30.
    Park, J., Brust, T. F., Lee, H. J., Lee, S. C., Watts, V. J., & Yeo, Y. (2014). Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano, 8, 3347–3356.CrossRefGoogle Scholar
  31. 31.
    Postma, A., Yan, Y., Wang, Y., Zelikin, A. N., Tjipto, E., & Caruso, F. (2009). Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. Chemistry of Materials, 21, 3042–3044.CrossRefGoogle Scholar
  32. 32.
    Cho, K., Wang, X., Nie, S., Chen, Z. G., & Shin, D. M. (2008). Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 14, 1310–1316.CrossRefGoogle Scholar
  33. 33.
    Heiati, H., Tawashi, R., Shivers, R. R., & Phillips, N. C. (1997). Solid lipid nanoparticles as drug carriers. I. Incorporation and retention of the lipophilic prodrug 3′-azido-3′-deoxythymidine palmitate. International Journal of Pharmaceutics, 146, 123–131.CrossRefGoogle Scholar
  34. 34.
    Gunaseelan, S., Gunaseelan, K., Deshmukh, M., Zhang, X., & Sinko, P. J. (2010). Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Advanced Drug Delivery Reviews, 62, 518–531.CrossRefGoogle Scholar
  35. 35.
    Sharma, A., Sharma, S., & Khuller, G. K. (2004). Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. The Journal of Antimicrobial Chemotherapy, 54, 761–766.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Param Patel
    • 1
  • Anas Hanini
    • 1
  • Achal Shah
    • 1
  • Dhruv Patel
    • 1
  • Shyam Patel
    • 1
  • Priyanka Bhatt
    • 1
  • Yashwant V Pathak
    • 1
    • 2
    Email author
  1. 1.College of Pharmacy, University of South FloridaTampaUSA
  2. 2.Adjunct professor at Faculty of PharmacyAirlangga UniversitySurabayaIndonesia

Personalised recommendations