Polydopamine-Based Simple and Versatile Surface Modification of Polymeric Nano Drug Carriers

  • Malay K. DasEmail author
  • Anupam Sarma
  • Trinayan Deka


The surface modification of polymeric nanoparticle (NP) with bioactive ligands and/or secondary polymeric layers is a common strategy to govern the interaction of NPs with cells, proteins, and other biomolecules. But such surface engineering is not always so simple when the surface is chemically nonreactive. Because of this, NP surface modification processes generally employ reactive connector or coupling agents or prefunctionalization of the polymer, which are very tricky and ineffective. However, prefunctionalization of polymers can reduce the ability of drug encapsulation efficiency if the inserted ligands hamper the chemical properties of the polymer. To solve this issue, scientists have discovered a method of dopamine polymerization as a way of NP surfaces functionalization. In brief, this method involves the incubation of raw NPs in a weak alkaline solution of dopamine and subsequent incubation with ligands. This reaction furnishes a universal coating of polydopamine for metals, polymers, and ceramics, irrespective of their physicochemical characteristics. Polydopamine-based surface modified nanomaterials emerge as novel nanocomposite and get the interests in the area of drug delivery and therapy because of their unique physicochemical features, such as multifaceted adhesive property, great chemical reactivity, exceptional biocompatibility and biodegradability, and strong photothermal conversion capacity. This chapter highlights the recent development of polydopamine-based surface modified polymeric nanoparticles for smart drug delivery and therapy.


Polymeric nanoparticle Surface coating Polydopamine Drug targeting Tumour targeting 



All figures and tables are original and self-made.


  1. 1.
    Hong, R., Huang, C., & Tseng, Y. (1999, November). Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice: Is surface coating with polyethylene glycol beneficial? Direct comparison of liposomal doxorubicin with or without polyethylene glycol coa. Clinical Cancer Research, 5, 3645–3652.PubMedGoogle Scholar
  2. 2.
    Hatakeyama, H., Akita, H., & Harashima, H. (2011). A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma. Advanced Drug Delivery Reviews, 63(3), 152–160.PubMedCrossRefGoogle Scholar
  3. 3.
    Kim, D., Kim, E., Kim, J., Park, K. M., Baek, K., Jung, M., Ko, Y. H., Sung, W., Kim, H. S., Suh, J. H., Park, C. G., Na, O. S., Lee, D. K., Lee, K. E., Han, S. S., & Kim, K. (2007). Direct synthesis of polymer nanocapsules with a noncovalently tailorable surface. Angewandte Chemie, International Edition, 46(19), 3471–3474.CrossRefGoogle Scholar
  4. 4.
    Kim, E., Kim, D., Jung, H., Lee, J., Paul, S., Selvapalam, N., Yang, Y., Lim, N., Park, C. G., & Kim, K. (2010). Facile, template-free synthesis of stimuli-responsive polymer nanocapsules for targeted drug delivery. Angewandte Chemie, International Edition, 49(26), 4405–4408.CrossRefGoogle Scholar
  5. 5.
    Liang, K., Such, G. K., Zhu, Z., Yan, Y., Lomas, H., & Caruso, F. (2011). Charge-shifting click capsules with dual-responsive cargo release mechanisms. Advanced Materials, 23(36), 273–277.CrossRefGoogle Scholar
  6. 6.
    Yan, Y., Wang, Y., Heath, J. K., Nice, E. C., & Caruso, F. (2011). Cellular association and cargo release of redox-responsive polymer capsules mediated by exofacial thiols. Advanced Materials, 23(34), 3916–3921.PubMedCrossRefGoogle Scholar
  7. 7.
    Ochs, C. J., Such, G. K., Yan, Y., Van Koeverden, M. P., & Caruso, F. (2010). Biodegradable click capsules with engineered drug-loaded multilayers. ACS Nano, 4(3), 1653–1663.PubMedCrossRefGoogle Scholar
  8. 8.
    Sahoo, S. K., & Labhasetwar, V. (2005). Enhanced antiproliferative activity of transferrin-conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Molecular Pharmaceutics, 2(5), 373–383.PubMedCrossRefGoogle Scholar
  9. 9.
    Rao, K. S., Reddy, M. K., Horning, J. L., & Labhasetwar, V. (2008). TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials, 29(33), 4429–4438.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Narayanan, S., Binulal, N. S., Mony, U., Manzoor, K., Nair, S., & Menon, D. (2010). Folate targeted polymeric ‘green’ nanotherapy for cancer. Nanotechnology, 21(28), 1–13.CrossRefGoogle Scholar
  11. 11.
    Mo, Y., & Lim, L. Y. (2005). Paclitaxel-loaded PLGA nanoparticles: Potentiation of anticancer activity by surface conjugation with wheat germ agglutinin. Journal of Controlled Release, 108(2–3), 244–262.PubMedCrossRefGoogle Scholar
  12. 12.
    Gu, F., Zhang, L., Teply, B. A., Mann, N., Wang, A., Radovic-Moreno, A. F., Langer, R., & Farokhzad, O. C. (2008). Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proceedings of the National Academy of Sciences, 105(7), 2586–2591.CrossRefGoogle Scholar
  13. 13.
    Hrkach, J., Von Hoff, D., Ali, M. M., Andrianova, E., Auer, J., Campbell, T., De Witt, D., Figa, M., Figueiredo, M., Horhota, A., Low, S., McDonnell, K., Peeke, E., Retnarajan, B., Sabnis, A., Schnipper, E., Song, J. J., Song, Y. H., Summa, J., Tompsett, D., Troiano, G., Hoven, T. V. G., Wright, J., LoRusso, P., Kantoff, P. W., Bander, N. H., Sweeney, C., Farokhzad, O. C., Langer, R., & Zale, S. (2012). Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Science Translational Medicine, 4(128), 1–11.CrossRefGoogle Scholar
  14. 14.
    Tosi, G., Costantino, L., Rivasi, F., Ruozi, B., Leo, E., Vergoni, A. V., Tacchi, R., Bertolini, A., Vandelli, M. A., & Forni, F. (2007). Targeting the central nervous system: In vivo experiments with peptide-derivatized nanoparticles loaded with Loperamide and Rhodamine-123. Journal of Controlled Release, 122(1), 1–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Bibb, J. A., Snyder, G. L., Nishi, A., Yan, Z., Meijer, L., Flenberg, A. A., Tsai, L. H., Kwon, Y. T., Girault, J. A., Czernik, A. J., Huganir, R. L., Hemmings, H. C., Nairn, A. C., & Greengard, P. (1999). Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature, 402(6762), 669–671.PubMedCrossRefGoogle Scholar
  16. 16.
    d’Ischia, M., Napolitano, A., Ball, V., Chen, C.-T., & Buehler, M. J. (2014). Polydopamine and eumelanin: From structure-property relationships to a unified tailoring strategy. Accounts of Chemical Research, 47(12), 3541–3550.PubMedCrossRefGoogle Scholar
  17. 17.
    Cui, X., Yin, Y., Ma, Z., Yin, Y., Guan, Y., Rong, S., Gao, J., Niu, Y., & Li, M. (2015). Polydopamine used as hollow capsule and core–shell structures for multiple applications. Nano, 10(05), 1530003-1–1530003-23.CrossRefGoogle Scholar
  18. 18.
    Lynge, M. E., Van Der Westen, R., Postma, A., & Städler, B. (2011). Polydopamine – A nature-inspired polymer coating for biomedical science. Nanoscale, 3(12), 4916–4928.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu, Y., Ai, K., & Lu, L. (2014). Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 114(9), 5057–5115.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-inspired surface chemistry for multifunctional coatings haeshin. Science, 318(5849), 426–430.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lee, H., Rho, J., & Messersmith, P. B. (2009). Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Advanced Materials, 21(4), 431–434.PubMedCrossRefGoogle Scholar
  22. 22.
    Dreyer, D. R., Miller, D. J., Freeman, B. D., Paul, D. R., & Bielawski, C. W. (2013). Perspectives on poly(dopamine). Chemical Science, 4(10), 3796–3802.CrossRefGoogle Scholar
  23. 23.
    D’Ischia, M., Napolitano, A., Ball, V., Chen, C. T., & Buehler, M. J. (2014). Polydopamine and eumelanin: From structure-property relationships to a unified tailoring strategy. Accounts of Chemical Research, 47(12), 3541–3550.PubMedCrossRefGoogle Scholar
  24. 24.
    Wu, T. F., & Hong, J. D. (2016). Synthesis of water-soluble dopamine-melanin for ultrasensitive and ultrafast humidity sensor. Sensors Actuators, B Chemical, 224, 178–184.CrossRefGoogle Scholar
  25. 25.
    Watt, A. A. R., Bothma, J. P., & Meredith, P. (2009). The supramolecular structure of melanin. Soft Matter, 5(19), 3754–3760.CrossRefGoogle Scholar
  26. 26.
    Yu, B., Liu, J., Liu, S., & Zhou, F. (2010). Pdop layer exhibiting zwitterionicity: A simple electrochemical interface for governing ion permeability. Chemical Communications, 46(32), 5900–5902.PubMedCrossRefGoogle Scholar
  27. 27.
    Fyodor, N., Vecchia, D., Luchini, A., Napolitano, A., Errico, G. D., Vitiello, G., Szekely, N., Ischia, M., Paduano, L., Ii, F., & Tecchio, P. V. (2014). Tris buffer modulates polydopamine growth, aggregation, and paramagnetic properties. Langmuir, 30(32), 9811–9818.CrossRefGoogle Scholar
  28. 28.
    Zheng, W., Fan, H., Wang, L., & Jin, Z. (2015). Oxidative self-polymerization of dopamine in an acidic environment. Langmuir, 31(42), 11671–11677.PubMedCrossRefGoogle Scholar
  29. 29.
    Barreto, W. J., Ponzoni, S., & Sassi, P. (1998). A Raman and UV-Vis study of catecholamines oxidized with Mn(III). Spectrochimica Acta, Part A, 55(1), 65–72.CrossRefGoogle Scholar
  30. 30.
    Tsai, W. B., Chien, C. Y., Thissen, H., & Lai, J. Y. (2011). Dopamine-assisted immobilization of poly(ethylene imine) based polymers for control of cell-surface interactions. Acta Biomaterialia, 7(6), 2518–2525.PubMedCrossRefGoogle Scholar
  31. 31.
    Coyne, K. J., Qin, X. X., & Waite, J. H. (1997). Extensible collagen in mussel byssus: A natural block copolymer. Science, 277(5333), 1830–1832.PubMedCrossRefGoogle Scholar
  32. 32.
    Akemi Ooka, A., & Garrell, R. L. (2000). Surface-enhanced Raman spectroscopy of DOPA-containing peptides related to adhesive protein of marine mussel, Mytilus edulis. Biopolymers, 57(2), 92–102.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee, B. P., Dalsin, J. L., & Messersmith, P. B. (2002). Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromolecules, 3(5), 1038–1047.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee, B. P., Chao, C. Y., Nunalee, F. N., Motan, E., Shull, K. R., & Messersmith, P. B. (2006). Rapid gel formation and adhesion in photocurable and biodegradable block copolymers with high DOPA content. Macromolecules, 39(5), 1740–1748.CrossRefGoogle Scholar
  35. 35.
    Zhu, B., & Edmondson, S. (2011). Polydopamine-melanin initiators for surface-initiated ATRP. Polymer, 52(10), 2141–2149.CrossRefGoogle Scholar
  36. 36.
    Ye, G., Lee, J., Perreault, F., & Elimelech, M. (2015). Controlled architecture of dual-functional block copolymer brushes on thin-film composite membranes for integrated ‘defending’ and ‘attacking’ strategies against biofouling. ACS Applied Materials & Interfaces, 7(41), 23069–23079.CrossRefGoogle Scholar
  37. 37.
    Chung, Y. C., & Huang, J. Y. (2014). Water-borne composite coatings using nanoparticles modified with dopamine derivatives. Thin Solid Films, 570(Part B), 376–382.CrossRefGoogle Scholar
  38. 38.
    Mostert, A. B., Powell, B. J., Pratt, F. L., Hanson, G. R., Sarna, T., Gentle, I. R., & Meredith, P. (2012). Role of semiconductivity and ion transport in the electrical conduction of melanin. Proceedings of the National Academy of Sciences, 109(23), 8943–8947.CrossRefGoogle Scholar
  39. 39.
    Ball, V. (2014). Physicochemical perspective on ‘polydopamine’ and ‘poly(catecholamine)’ films for their applications in biomaterial coatings. Biointerphases, 9(3), 030801-1–030801-10.CrossRefGoogle Scholar
  40. 40.
    Yeroslavsky, G., Girshevitz, O., Foster-Frey, J., Donovan, D. M., & Rahimipour, S. (2015). Antibacterial and antibiofilm surfaces through polydopamine-assisted immobilization of lysostaphin as an antibacterial enzyme. Langmuir, 31(3), 1064–1073.PubMedCrossRefGoogle Scholar
  41. 41.
    Cai, T., Li, X., Wan, C., & Chung, T. S. (2016, September). Zwitterionic polymers grafted poly(ether sulfone) hollow fiber membranes and their antifouling behaviors for osmotic power generation. Journal of Membrane Science, 497, 142–152.CrossRefGoogle Scholar
  42. 42.
    Schaubroeck, D., Mader, L., Dubruel, P., & Vanfleteren, J. (2015). Surface modification of an epoxy resin with polyamines and polydopamine: Adhesion toward electroless deposited copper. Applied Surface Science, 353, 238–244.CrossRefGoogle Scholar
  43. 43.
    Wang, N., Liu, Y., Qiao, Z., Diestel, L., Zhou, J., Huang, A., & Caro, J. (2015). Polydopamine-based synthesis of a zeolite imidazolate framework ZIF-100 membrane with high H2/CO2 selectivity. Journal of Materials Chemistry A, 3(8), 4722–4728.CrossRefGoogle Scholar
  44. 44.
    Fu, L., Shi, Y., Wang, K., Zhou, P., Liu, M., Wan, Q., Tao, L., Zhang, X., & Wei, Y. (2015). Biomimic modification of graphene oxide. New Journal of Chemistry, 39(10), 8172–8178.CrossRefGoogle Scholar
  45. 45.
    Vaish, A., Vanderah, D. J., Richter, L. J., Dimitriou, M., Steffens, K. L., & Walker, M. L. (2015). Dithiol-based modification of poly(dopamine): Enabling protein resistance via short-chain ethylene oxide oligomers. Chemical Communications, 51(30), 6591–6594.PubMedCrossRefGoogle Scholar
  46. 46.
    Luo, R., Tang, L., Wang, J., Zhao, Y., Tu, Q., Weng, Y., Shen, R., & Huang, N. (2013, June). Improved immobilization of biomolecules to quinone-rich polydopamine for efficient surface functionalization. Colloids Surfaces B Biointerfaces, 106, 66–73.PubMedCrossRefGoogle Scholar
  47. 47.
    Martín, M., Orive, A. G., Lorenzo-Luis, P., Creus, A. H., González-Mora, J. L., & Salazar, P. (2014). Quinone-rich poly(dopamine) magnetic nanoparticles for biosensor applications. Chemphyschem, 15(17), 3742–3752.PubMedCrossRefGoogle Scholar
  48. 48.
    Yang, W. J., Neoh, K.-G., Kang, E.-T., Lay-Ming Teo, S., & Rittschof, D. (2013). Stainless steel surfaces with thiol-terminated hyperbranched polymers for functionalization via thiol-based chemistry. Polymer Chemistry, 4(10), 3105–3115.CrossRefGoogle Scholar
  49. 49.
    Mrówczyński, R., Nan, A., Turcu, R., Leistner, J., & Liebscher, J. (2015). Polydopamine – A versatile coating for surface-initiated ring-opening polymerization of lactide to polylactide. Macromolecular Chemistry and Physics, 216(2), 211–217.CrossRefGoogle Scholar
  50. 50.
    Bernsmann, F., Ponche, A., Ringwald, C., Hemmerlé, J., Raya, J., Bechinger, B., Voegel, J., Schaaf, P., & Ball, V. (2009). Characterization of dopamine−melanin growth on silicon oxide. Journal of Physical Chemistry C, 113(19), 8234–8242.CrossRefGoogle Scholar
  51. 51.
    Cho, J. H., Katsumata, R., Zhou, S. X., Bin Kim, C., Dulaney, A. R., Janes, D. W., & Ellison, C. J. (2016). Ultrasmooth polydopamine modified surfaces for block copolymer nanopatterning on flexible substrates. ACS Applied Materials & Interfaces, 8(11), 7456–7463.CrossRefGoogle Scholar
  52. 52.
    Su, L., Yu, Y., Zhao, Y., Liang, F., & Zhang, X. (2016). Strong antibacterial polydopamine coatings prepared by a shaking-assisted method. Scientific Reports, 6(24420), 1–8.Google Scholar
  53. 53.
    Meng, J., Xie, J., Han, X., & Lu, C. (2016, May). Surface wrinkling on polydopamine film. Applied Surface Science, 371, 96–101.CrossRefGoogle Scholar
  54. 54.
    Proks, V., Brus, J., Pop-Georgievski, O., Večerníková, E., Wisniewski, W., Kotek, J., Urbanová, M., & Rypáček, F. (2013). Thermal-induced transformation of polydopamine structures: An efficient route for the stabilization of the polydopamine surfaces. Macromolecular Chemistry and Physics, 214(4), 499–507.CrossRefGoogle Scholar
  55. 55.
    Wang, Y. R., Yang, S. Y., Chen, G. X., & Wei, P. (2018). Barbaloin loaded polydopamine-polylactide-TPGS (PLA-TPGS) nanoparticles against gastric cancer as a targeted drug delivery system: Studies in vitro and in vivo. Biochemical and Biophysical Research Communications, 499(1), 8–16.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang, H., Zhu, W., Huang, Y., Li, Z., Jiang, Y., & Xie, Q. (2017, October). Facile encapsulation of hydroxycamptothecin nanocrystals into zein-based nanocomplexes for active targeting in drug delivery and cell imaging. Acta Biomaterialia, 61, 88–100.PubMedCrossRefGoogle Scholar
  57. 57.
    Kong, N., Deng, M., Sun, X. N., Chen, Y. D., & Sui, X. B. (2018). Polydopamine-functionalized CA-(PCL-ran-PLA) nanoparticles for target delivery of docetaxel and chemo-photothermal therapy of breast cancer. Frontiers in Pharmacology, 9(125), 1–14.Google Scholar
  58. 58.
    Zhu, D., Tao, W., Zhang, H., Liu, G., Wang, T., Zhang, L., Zeng, X., & Mei, L. (2016, January). Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomaterialia, 30, 144–154.PubMedCrossRefGoogle Scholar
  59. 59.
    Park, J., Brust, T. F., Lee, H. J., Lee, S. C., Watts, V. J., & Yeo, Y. (2014). Polydopamine-based simple and versatile surface modification of polymeric nano drug carriers. ACS Nano, 8(4), 3347–3356.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Gullotti, E., Park, J., & Yeo, Y. (2013). Polydopamine-based surface modification for the development of peritumorally activatable nanoparticles. Pharmaceutical Research, 30(8), 1956–1967.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Sunoqrot, S., Hasan, L., Alsadi, A., Hamed, R., & Tarawneh, O. (2017, August). Interactions of mussel-inspired polymeric nanoparticles with gastric mucin: Implications for gastro-retentive drug delivery. Colloids Surfaces B Biointerfaces, 156, 1–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Ao, L., Wu, C., Liu, K., Wang, W., Fang, L., Huang, L., & Su, W. (2018). Polydopamine-derivated hierarchical nanoplatforms for efficient dual-modal imaging-guided combination in vivo cancer therapy. ACS Applied Materials & Interfaces, 10(15), 12544–12552.CrossRefGoogle Scholar
  63. 63.
    Amoozgar, Z., & Goldberg, M. S. (2017). Surface modulation of polymeric nanocarriers enhances the stability and delivery of proteins and small molecules. Nanomedicine, 12(7), 729–743.PubMedCrossRefGoogle Scholar
  64. 64.
    Cui, J., Yan, Y., Such, G. K., Liang, K., Ochs, C. J., Postma, A., & Caruso, F. (2012). Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. Biomacromolecules, 13(8), 2225–2228.PubMedCrossRefGoogle Scholar
  65. 65.
    Amoozgar, Z., Wang, L., Brandstoetter, T., Wallis, S. S., Wilson, E. M., & Goldberg, M. S. (2014). Dual-layer surface coating of PLGA-based nanoparticles provides slow-release drug delivery to achieve metronomic therapy in a paclitaxel-resistant murine ovarian cancer model. Biomacromolecules, 15(11), 4187–4194.PubMedCrossRefGoogle Scholar
  66. 66.
    Nie, J., Cheng, W., Peng, Y., Liu, G., Chen, Y., Wang, X., Liang, C., Tao, W., Wei, Y., Zeng, X., & Mei, L. (2017). Co-delivery of docetaxel and bortezomib based on a targeting nanoplatform for enhancing cancer chemotherapy effects. Drug Delivery, 24(1), 1124–1138.PubMedCrossRefGoogle Scholar
  67. 67.
    Bi, D., Zhao, L., Yu, R., Li, H., Guo, Y., Wang, X., & Han, M. (2018). Surface modification of doxorubicin-loaded nanoparticles based on polydopamine with pH-sensitive property for tumor targeting therapy. Drug Delivery, 25(1), 564–575.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Han, N., Pang, L., Xu, J., Hyun, H., Park, J., & Yeo, Y. (2017). Development of surface-variable polymeric nanoparticles for drug delivery to tumors. Molecular Pharmaceutics, 14(5), 1538–1547.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Tao, W., Zeng, X., Wu, J., Zhu, X., Yu, X., Zhang, X., Zhang, J., Liu, G., & Mei, L. (2016). Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects. Theranostics, 6(4), 470–484.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Park, J., Kadasala, N. R., Abouelmagd, S. A., Castanares, M. A., David, S., Wei, A., Yeo, Y., Pharmacy, P., Lafayette, W., Lilly, E., Lafayette, W., & Lafayette, W. (2016, September). Polymer–iron oxide composite nanoparticles for EPR-independent drug delivery. Biomaterials, 101, 285–295.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Abouelmagd, S. A., Ku, Y. J., Yeo, Y., Pharmacy, P., Lafayette, W., & Lafayette, W. (2015). Low molecular weight chitosan-coated polymeric nanoparticles for sustained and pH-sensitive delivery of paclitaxel. Journal of Drug Targeting, 23(7–8), 725–735.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Sun, Y., Deng, Y., Ye, Z., Liang, S., Tang, Z., & Wei, S. (2013, November). Peptide decorated nano-hydroxyapatite with enhanced bioactivity and osteogenic differentiation via polydopamine coating. Colloids Surfaces B Biointerfaces, 111, 107–116.PubMedCrossRefGoogle Scholar
  73. 73.
    Dreyer, D. R., Miller, D. J., Freeman, B. D., Paul, D. R., & Bielawski, C. W. (2012). Elucidating the structure of poly(dopamine). Langmuir, 28(15), 6428–6435.PubMedCrossRefGoogle Scholar
  74. 74.
    Hong, S., Na, Y. S., Choi, S., Song, I. T., Kim, W. Y., & Lee, H. (2012). Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation. Advanced Functional Materials, 22(22), 4711–4717.CrossRefGoogle Scholar
  75. 75.
    Liebscher, J., Mrówczyński, R., Scheidt, H. A., Filip, C., Haìdade, N. D., Turcu, R., Bende, A., & Beck, S. (2013). Structure of polydopamine: A never-ending story? Langmuir, 29(33), 10539–10548.PubMedCrossRefGoogle Scholar
  76. 76.
    Ye, Q., Zhou, F., & Liu, W. (2011). Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews, 40(7), 4244–4258.PubMedCrossRefGoogle Scholar
  77. 77.
    Leng, C., Liu, Y., Jenkins, C., Meredith, H., Wilker, J. J., & Chen, Z. (2013). Interfacial structure of a DOPA-inspired adhesive polymer studied by sum frequency generation vibrational spectroscopy. Langmuir, 29(22), 6659–6664.PubMedCrossRefGoogle Scholar
  78. 78.
    Zhang, Y., Thingholm, B., Goldie, K. N., Ogaki, R., & Städler, B. (2012). Assembly of poly(dopamine) films mixed with a nonionic polymer. Langmuir, 28(51), 17585–17592.PubMedCrossRefGoogle Scholar
  79. 79.
    Lee, H., Scherer, N. F., & Messersmith, P. B. (2006). Single-molecule mechanics of mussel adhesion. Proceedings of the National Academy of Sciences, 103(35), 12999–13003.CrossRefGoogle Scholar
  80. 80.
    Zhou, R., Ren, P. F., Yang, H. C., & Xu, Z. K. (2014, September). Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine co-deposition. Journal of Membrane Science, 466, 18–25.CrossRefGoogle Scholar
  81. 81.
    Ren, P. F., Yang, H. C., Jin, Y. N., Liang, H. Q., Wan, L. S., & Xu, Z. K. (2015). Underwater superoleophobic meshes fabricated by poly(sulfobetaine)/polydopamine co-deposition. RSC Advances, 5(59), 47592–47598.CrossRefGoogle Scholar
  82. 82.
    Ren, P. F., Yang, H. C., Liang, H. Q., Xu, X. L., Wan, L. S., & Xu, Z. K. (2015). Highly stable, protein-resistant surfaces via the layer-by-layer assembly of poly(sulfobetaine methacrylate) and tannic acid. Langmuir, 31(21), 5851–5858.PubMedCrossRefGoogle Scholar
  83. 83.
    Chang, C. C., Kolewe, K. W., Li, Y., Kosif, I., Freeman, B. D., Carter, K. R., Schiffman, J. D., & Emrick, T. (2016). Underwater superoleophobic surfaces prepared from polymer zwitterion/dopamine composite coatings. Advanced Materials Interfaces, 3(6), 1–9.CrossRefGoogle Scholar
  84. 84.
    Yang, H. C., Liao, K. J., Huang, H., Wu, Q. Y., Wan, L. S., & Xu, Z. K. (2014). Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation. Journal of Materials Chemistry A, 2(26), 10225–10230.CrossRefGoogle Scholar
  85. 85.
    Yang, H. C., Xu, W., Du, Y., Wu, J., & Xu, Z. K. (2014). Composite free-standing films of polydopamine/polyethyleneimine grown at the air/water interface. RSC Advances, 4(85), 45415–45418.CrossRefGoogle Scholar
  86. 86.
    Zhao, C., Zuo, F., Liao, Z., Qin, Z., Du, S., & Zhao, Z. (2015). Mussel-inspired one-pot synthesis of a fluorescent and water-soluble polydopamine-polyethyleneimine copolymer. Macromolecular Rapid Communications, 36(10), 909–915.PubMedCrossRefGoogle Scholar
  87. 87.
    Quan, S., Li, S., Wang, Z., Yan, X., Guo, Z., & Shao, L. (2015). A bio-inspired CO2-philic network membrane for enhanced sustainable gas separation. Journal of Materials Chemistry A, 3(26), 13758–13766.CrossRefGoogle Scholar
  88. 88.
    Karkhanechi, H., Takagi, R., & Matsuyama, H. (2014). Enhanced antibiofouling of RO membranes via polydopamine coating and polyzwitterion immobilization. Desalination, 337(1), 23–30.CrossRefGoogle Scholar
  89. 89.
    Wu, T. F., & Hong, J. D. (2015). Dopamine-melanin nanofilms for biomimetic structural coloration. Biomacromolecules, 16(2), 660–666.PubMedCrossRefGoogle Scholar
  90. 90.
    Zhang, C., Lv, Y., Qiu, W. Z., He, A., & Xu, Z. K. (2017). Polydopamine coatings with nanopores for versatile molecular separation. ACS Applied Materials & Interfaces, 9(16), 14437–14444.CrossRefGoogle Scholar
  91. 91.
    Zhang, L., Shi, J., Jiang, Z., Jiang, Y., Qiao, S., Li, J., Wang, R., Meng, R., Zhu, Y., & Zheng, Y. (2011). Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. Green Chemistry, 13(2), 300–306.CrossRefGoogle Scholar
  92. 92.
    Ball, V., Del Frari, D., Toniazzo, V., & Ruch, D. (2012). Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: Insights in the polydopamine deposition mechanism. Journal of Colloid and Interface Science, 386(1), 366–372.PubMedCrossRefGoogle Scholar
  93. 93.
    Shin, Y. M., Jun, I., Lim, Y. M., Rhim, T., & Shin, H. (2013). Bio-inspired immobilization of cell-adhesive ligands on electrospun nanofibrous patches for cell delivery. Macromolecular Materials and Engineering, 298(5), 555–564.CrossRefGoogle Scholar
  94. 94.
    Zhou, P., Deng, Y., Lyu, B., Zhang, R., Zhang, H., Ma, H., Lyu, Y., & Wei, S. (2014). Rapidly-deposited polydopamine coating via high temperature and vigorous stirring: Formation, characterization and biofunctional evaluation. PLoS One, 9(11), 1–10.Google Scholar
  95. 95.
    Sheng, W., Li, B., Wang, X., Dai, B., Yu, B., Jia, X., & Zhou, F. (2015). Brushing up from ‘anywhere’ under sunlight: A universal surface-initiated polymerization from polydopamine-coated surfaces. Chemical Science, 6(3), 2068–2073.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Ball, V. (2010). Impedance spectroscopy and zeta potential titration of dopa-melanin films produced by oxidation of dopamine. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 363(1–3), 92–97.CrossRefGoogle Scholar
  97. 97.
    Mack, F., & Bönisch, H. (1979). Dissociation constants and lipophilicity of catecholamines and related compounds. Naunyn-Schmiedeberg’s Archives of Pharmacology, 310(1), 1–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Klosterman, L., Riley, J. K., & Bettinger, C. J. (2015). Control of heterogeneous nucleation and growth kinetics of dopamine-melanin by altering substrate chemistry. Langmuir, 31(11), 3451–3458.PubMedCrossRefGoogle Scholar
  99. 99.
    Xiong, W., Peng, L., Chen, H., & Li, Q. (2015). Surface modification of MPEG-b-PCL-based nanoparticles via oxidative self-polymerization of dopamine for malignant melanoma therapy. International Journal of Nanomedicine, 10, 2985–2996.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesDibrugarh UniversityDibrugarhIndia

Personalised recommendations