Advertisement

Successful Delivery of Zidovudine-Loaded Docosanol Nanostructured Lipid Carriers (Docosanol NLCs) into Rat Brain

  • Tapash Chakraborty
  • Malay K. DasEmail author
  • Lopamudra Dutta
  • Biswajit Mukherjee
  • Sanjoy Das
  • Anupam Sarma
Chapter

Abstract

The major challenges to the clinical application of zidovudine are its moderate aqueous solubility, relative short half-life, and incapability to go across BBB after systemic administration makes the brain one of the dominant HIV reservoirs. We investigated the development of zidovudine-loaded NLCs based on docosanol and oleic acid which were further surface modified with PEG4000 and HAS. The drug content and entrapment efficiencies were assessed by UV analysis. The mean diameter of the SyLN was found to be at 54.7 ± 1.4 nm with a zeta potential of −21.6 ± 0.2 mV and relatively low polydispersity. The NLCs showed excellent stability in the refrigerated condition, in blood serum and were safe for IV administration. In vitro release studies showed a sustained release profile of zidovudine in aCSF. In vivo plasma and brain pharmacokinetics investigation in a rat model showed that SyLN and SyLN-Peg NLCs rapidly reached the brain and yielded higher MRT, Cmax, and AUC. The rat brain pharmacokinetic data confirm the brain localization and accumulation of the developed NLCs delivering AZT in a sustained manner for a prolonged period of time, which is further confirmed by CLSM images of brain cryosections labeled with SyLN-C6 NLCs. Our results suggest that the developed docosanol NLCs could be a promising drug delivery system for long-term brain delivery of zidovudine in the treatment of Neuro-AIDS.

Keywords

Docosanol NLCs Zidovudine Blood–brain barrier Brain targeted NLCs Sustained release NLCs Neuro-AIDS 

Notes

Acknowledgments

The authors gratefully acknowledge the experimental/analytical support of Guwahati Biotech Park, Technology Complex, IIT Guwahati and The Sophisticated Analytical Instrument Facility (SAIF), NEHU Shillong, and College of Veterinary Science, Guwahati. This work was financially supported by the Department of Biotechnology, Ministry of Science & Technology, Government of India under Grant No. BT/504/NE/TBP/2013.

Declaration

All figures and tables are original and self-made.

References

  1. 1.
    Koyuncu, O. O., Hogue, I. B., & Enquist, L. W. (2013). Virus infections in the nervous system. Cell Host and Microbe, 13, 379–393.  https://doi.org/10.1016/j.chom.2013.03.010.CrossRefPubMedGoogle Scholar
  2. 2.
    Schnell, G., Joseph, S., Spudich, S., Price, R. W., & Swanstrom, R. (2011). HIV-1 replication in the central nervous system occurs in two distinct cell types. PLoS Pathogens, 7, e1002286.  https://doi.org/10.1371/journal.ppat.1002286.CrossRefPubMedGoogle Scholar
  3. 3.
    Klecker, R. W., Collins, J. M., Yarchoan, R., Thomas, R., Jenkins, J. F., Broder, S., et al. (1987). Plasma and cerebrospinal fluid pharmacokinetics of 3′-azido-3′-deoxythymidine: A novel pyrimidine analog with potential application for the treatment of patients with AIDS and related diseases. Clinical Pharmacology and Therapeutics, 41, 407–412.CrossRefGoogle Scholar
  4. 4.
    Fan, H., Liu, G., Huang, Y., Li, Y., & Xia, Q. (2014). Development of a nanostructured lipid carrier formulation for increasing photo-stability and water solubility of phenylethyl resorcinol. Applied Surface Science, 288, 193–200.  https://doi.org/10.1016/j.apsusc.2013.10.006.CrossRefGoogle Scholar
  5. 5.
    Lim, W. M., Rajinikanth, P. S., Mallikarjun, C., & Kang, Y. B. (2014). Formulation and delivery of itraconazole to the brain using a nanolipid carrier system. International Journal of Nanomedicine, 9, 2117–2126.  https://doi.org/10.2147/IJN.S57565.CrossRefPubMedGoogle Scholar
  6. 6.
    De Clercq, E. (2010). Antiretroviral drugs. Current Opinion in Pharmacology, 10, 507–515.  https://doi.org/10.1016/j.coph.2010.04.011.CrossRefPubMedGoogle Scholar
  7. 7.
    Kuo, Y.-C., & Chung, J.-F. (2011). Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids and Surfaces. B, Biointerfaces, 83, 299–306.  https://doi.org/10.1016/j.colsurfb.2010.11.037.CrossRefPubMedGoogle Scholar
  8. 8.
    Purvin, S., Vuddanda, P. R., Singh, S. K., Jain, A., & Singh, S. (2014). Pharmacokinetic and tissue distribution study of solid lipid nanoparticles of zidovudine in rats. Journal of Nanotechnology, 2014, 1–7.  https://doi.org/10.1155/2014/854018.CrossRefGoogle Scholar
  9. 9.
    Singh, S., Dobhal, A. K., Jain, A., Pandit, J. K., & Chakraborty, S. (2010). Formulation and evaluation of solid lipid nanoparticles of a water soluble drug: Zidovudine. Chemical and Pharmaceutical Bulletin (Tokyo), 58, 650–655.CrossRefGoogle Scholar
  10. 10.
    Uronnachi, E. M., Ogbonna, J. D., Kenechukwu, F. C., Chime, S. A., Attama, A. A., & Okore, V. C. (2014). Formulation and release characteristics of zidovudine-loaded solidified lipid microparticles. Tropical Journal of Pharmaceutical Research, 13, 199–199.  https://doi.org/10.4314/tjpr.v13i2.5.CrossRefGoogle Scholar
  11. 11.
    Deepak Sunil, B., Rajendra, D., & Narendra, D. (2010). Liposomal drug delivery system for zidovudine: Design and characterization. International Journal of Drug Development and Research, 2, 8–14.Google Scholar
  12. 12.
    Shibata, A., McMullen, E., Pham, A., Belshan, M., Sanford, B., Zhou, Y., et al. (2013). Polymeric nanoparticles containing combination antiretroviral drugs for HIV type 1 treatment. AIDS Research and Human Retroviruses, 29, 746–754.  https://doi.org/10.1089/aid.2012.0301.CrossRefPubMedGoogle Scholar
  13. 13.
    Das, S., Ng, W. K., & Tan, R. B. H. (2012). Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? European Journal of Pharmaceutical Sciences, 47, 139–151.  https://doi.org/10.1016/j.ejps.2012.05.010.CrossRefPubMedGoogle Scholar
  14. 14.
    Doktorovová, S., Araújo, J., Garcia, M. L., Rakovský, E., & Souto, E. B. (2010). Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Colloids and Surfaces. B, Biointerfaces, 75, 538–542.  https://doi.org/10.1016/j.colsurfb.2009.09.033.CrossRefPubMedGoogle Scholar
  15. 15.
    Joshy, K. S., & Sharma, C. P. (2012). Blood compatible nanostructured lipid carriers for the enhanced delivery of azidothymidine to brain. Journal of Computational and Theoretical Nanoscience, 6(1), 47–55.Google Scholar
  16. 16.
    Marcelletti, J. F. (2002). Synergistic inhibition of herpesvirus replication by docosanol and antiviral nucleoside analogs. Antiviral Research, 56, 153–166.CrossRefGoogle Scholar
  17. 17.
    Nanjwade, B. K., Kadam, V. T., & Manvi, F. V. (2013). Formulation and characterization of nanostructured lipid carrier of ubiquinone (Coenzyme Q10). Journal of Biomedical Nanotechnology, 9, 450–460.CrossRefGoogle Scholar
  18. 18.
    Pope, L. E., Marcelletti, J. F., Katz, L. R., Lin, J. Y., Katz, D. H., Parish, M. L., et al. (1998). The anti-herpes simplex virus activity of n-docosanol includes inhibition of the viral entry process. Antiviral Research, 40, 85–94.  https://doi.org/10.1016/S0166-3542(98)00048-5.CrossRefPubMedGoogle Scholar
  19. 19.
    Souto, E. B., Mehnert, W., & Muller, R. H. (2006). Polymorphic behaviour of Compritol888 ATO as bulk lipid and as SLN and NLC. Journal of Microencapsulation, 23, 417–433.  https://doi.org/10.1080/02652040600612439.CrossRefPubMedGoogle Scholar
  20. 20.
    Pope, L. E., Marcelletti, J. F., Katz, L. R., & Katz, D. H. (1996). Anti-herpes simplex virus activity of n-docosanol correlates with intracellular metabolic conversion of the drug. Journal of Lipid Research, 37, 2167–2178.PubMedGoogle Scholar
  21. 21.
    TOXNET: 1-DOCOSANOL [WWW Document]. (n.d.). Retrieved October 19, 2017, from http://toxnet.nlm.nih.gov/cgi-bin/sis/search2/r?dbs+hsdb:@term+@DOCNO+5739
  22. 22.
    Iglesias, G., Hlywka, J. J., Berg, J. E., Khalil, M. H., Pope, L. E., & Tamarkin, D. (2002a). The toxicity of behenyl alcohol: I. Genotoxicity and subchronic toxicity in rats and dogs. Regulatory Toxicology and Pharmacology, 36, 69–79.  https://doi.org/10.1006/rtph.2002.1566.CrossRefPubMedGoogle Scholar
  23. 23.
    Iglesias, G., Hlywka, J. J., Berg, J. E., Khalil, M. H., Pope, L. E., & Tamarkin, D. (2002b). The toxicity of behenyl alcohol: II. Reproduction studies in rats and rabbits. Regulatory Toxicology and Pharmacology, 36, 80–85.  https://doi.org/10.1006/rtph.2002.1566.CrossRefPubMedGoogle Scholar
  24. 24.
    Aburahma, M. H., & Badr-Eldin, S. M. (2014). Compritol 888 ATO: A multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opinion on Drug Delivery, 11, 1865–1883.  https://doi.org/10.1517/17425247.2014.935335.CrossRefPubMedGoogle Scholar
  25. 25.
    Chinsriwongkul, A., Chareanputtakhun, P., Ngawhirunpat, T., Rojanarata, T., Sila-on, W., Ruktanonchai, U., et al. (2012). Nanostructured lipid carriers (NLC) for parenteral delivery of an anticancer drug. AAPS PharmSciTech, 13, 150–158.  https://doi.org/10.1208/s12249-011-9733-8.CrossRefPubMedGoogle Scholar
  26. 26.
    Gönüllü, Ü., Üner, M., Yener, G., Karaman, E. F., & Aydoğmuş, Z. (2015). Formulation and characterization of solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsion of lornoxicam for transdermal delivery. Acta Pharmaceutica, 65, 1–13.  https://doi.org/10.1515/acph-2015-0009.CrossRefPubMedGoogle Scholar
  27. 27.
    Patel, D., Dasgupta, S., Dey, S., Ramani, Y. R., Ray, S., & Mazumder, B. (2012). Nanostructured lipid carriers (NLC)-based gel for the topical delivery of aceclofenac: Preparation, characterization, and in vivo evaluation. Scientia Pharmaceutica, 80, 749–764.  https://doi.org/10.3797/scipharm.1202-12.CrossRefPubMedGoogle Scholar
  28. 28.
    Azhar Shekoufeh Bahari, L., & Hamishehkar, H. (2016). The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Advanced Pharmaceutical Bulletin, 6, 143–151.  https://doi.org/10.15171/apb.2016.021.CrossRefPubMedGoogle Scholar
  29. 29.
    Shaji, J., & Jain, V. (2010). Solid lipid nanoparticles: A novel carrier for chemotherapy. International Journal of Pharmacy and Pharmaceutical Sciences, 2, 8–17.Google Scholar
  30. 30.
    Uner, M., & Yener, G. (2007). Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. International Journal of Nanomedicine, 2, 289–300.PubMedGoogle Scholar
  31. 31.
    Wang, L., Luo, Q., Lin, T., Li, R., Zhu, T., Zhou, K., et al. (2015). PEGylated nanostructured lipid carriers (PEG-NLC) as a novel drug delivery system for biochanin A. Drug Development and Industrial Pharmacy, 41, 1204–1212.  https://doi.org/10.3109/03639045.2014.938082.CrossRefPubMedGoogle Scholar
  32. 32.
    Tamjidi, F., Shahedi, M., Varshosaz, J., & Nasirpour, A. (2014). Design and characterization of astaxanthin-loaded nanostructured lipid carriers. Innovative Food Science and Emerging Technologies, 26, 366–374.  https://doi.org/10.1016/j.ifset.2014.06.012.CrossRefGoogle Scholar
  33. 33.
    Kashanian, S., & Rostami, E. (2014). PEG-stearate coated solid lipid nanoparticles as levothyroxine carriers for oral administration. Journal of Nanoparticle Research, 16, 2293.  https://doi.org/10.1007/s11051-014-2293-6.CrossRefGoogle Scholar
  34. 34.
    Tsai, M. J., Wu, P. C., Huang, Y. B., Chang, J. S., Lin, C. L., Tsai, Y. H., et al. (2012). Baicalein loaded in tocol nanostructured lipid carriers (tocol NLCs) for enhanced stability and brain targeting. International Journal of Pharmaceutics, 423, 461–470.  https://doi.org/10.1016/j.ijpharm.2011.12.009.CrossRefPubMedGoogle Scholar
  35. 35.
    Pardeike, J., Weber, S., Haber, T., Wagner, J., Zarfl, H. P., Plank, H., et al. (2011). Development of an Itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. International Journal of Pharmaceutics, 419, 329–338.  https://doi.org/10.1016/j.ijpharm.2011.07.040.CrossRefPubMedGoogle Scholar
  36. 36.
    Yuan, H., Wang, L.-L., Du, Y.-Z., You, J., Hu, F.-Q., & Zeng, S. (2007). Preparation and characteristics of nanostructured lipid carriers for control-releasing progesterone by melt-emulsification. Colloids and Surfaces. B, Biointerfaces, 60, 174–179.  https://doi.org/10.1016/j.colsurfb.2007.06.011.CrossRefPubMedGoogle Scholar
  37. 37.
    Thatipamula, R., Palem, C., Gannu, R., Mudragada, S., & Yamsani, M. (2011). Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles and nanostructured lipid carriers. Daru, 19, 23–32.PubMedGoogle Scholar
  38. 38.
    Gaba, B., Fazil, M., Khan, S., Ali, A., Baboota, S., & Ali, J. (2015). Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bulletin of Faculty of Pharmacy, Cairo University, 53, 147–159.  https://doi.org/10.1016/j.bfopcu.2015.10.001.CrossRefGoogle Scholar
  39. 39.
    Tita, B., Ledeti, I., Bandur, G., & Tita, D. (2014). Compatibility study between indomethacin and excipients in their physical mixtures. Journal of Thermal Analysis and Calorimetry, 118, 1293–1304.  https://doi.org/10.1007/s10973-014-3986-x.CrossRefGoogle Scholar
  40. 40.
    Gartziandia, O., Egusquiaguirre, S. P., Bianco, J., Pedraz, J. L., Igartua, M., Hernandez, R. M., et al. (2016). Nanoparticle transport across in vitro olfactory cell monolayers. International Journal of Pharmaceutics, 499, 81–89.  https://doi.org/10.1016/j.ijpharm.2015.12.046.CrossRefPubMedGoogle Scholar
  41. 41.
    Praveen, S., Gowda, D. V., Srivastava, A., & Osmani, R. A. M. (2016). Formulation and evaluation of nanostructured lipid carrier (NLC) for glimepiride. Der Pharmacia Lettre, 8, 304–309.  https://doi.org/10.20959/wjpps20164-6398.CrossRefGoogle Scholar
  42. 42.
    Patlolla, R. R., Chougule, M., Patel, A. R., Jackson, T., Tata, P. N. V., & Singh, M. (2010). Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. Journal of Controlled Release, 144, 233–241.  https://doi.org/10.1016/j.jconrel.2010.02.006.CrossRefPubMedGoogle Scholar
  43. 43.
    D’Souza, S., & Souza, S. (2014). A review of in vitro drug release test methods for nano-sized dosage forms. Advances in Pharmacy, 2014, 1–12.  https://doi.org/10.1155/2014/304757.CrossRefGoogle Scholar
  44. 44.
    Ahmad, A. M. (2007). Recent advances in pharmacokinetic modeling. Biopharmaceutics and Drug Disposition, 28, 135–143.  https://doi.org/10.1002/bdd.CrossRefPubMedGoogle Scholar
  45. 45.
    Dash, S., Murthy, P. N., Nath, L., & Chowdhury, P. (2010). Kinetic modeling on drug release from controlled drug delivery systems. Acta Poloniae Pharmaceutica, 67, 217–223.  https://doi.org/10.1016/S0928-0987(01)00095-1.CrossRefPubMedGoogle Scholar
  46. 46.
    Hu, X., Yang, F., Liao, Y., Li, L., & Zhang, L. (2017). Cholesterol–PEG comodified poly (N -butyl) cyanoacrylate nanoparticles for brain delivery: In vitro and in vivo evaluations. Drug Delivery, 24, 121–132.  https://doi.org/10.1080/10717544.2016.1233590.CrossRefPubMedGoogle Scholar
  47. 47.
    Khatik, R., Dwivedi, P., Shukla, A., Srivastava, P., Rath, S. K., Paliwal, S. K., et al. (2014). Development, characterization and toxicological evaluations of phospholipids complexes of curcumin for effective drug delivery in cancer chemotherapy. Drug Delivery, 23, 1–12.  https://doi.org/10.3109/10717544.2014.936988.CrossRefGoogle Scholar
  48. 48.
    Li, C., Shen, Y., Sun, C., Nihad, C., & Tu, J. (2014). Immunosafety and chronic toxicity evaluation of monomethoxypoly(ethylene glycol)-b-poly(lactic acid) polymer micelles for paclitaxel delivery. Drug Delivery, 23, 1–8.  https://doi.org/10.3109/10717544.2014.920429.CrossRefGoogle Scholar
  49. 49.
    Bondonna, T. J., Jacquet, Y., & Wolf, G. (1977). Perfusion-fixation procedure for immediate histologic processing of brain tissue. Physiology and Behavior, 19, 345–347.  https://doi.org/10.1016/0031-9384(77)90351-1.CrossRefPubMedGoogle Scholar
  50. 50.
    Gage, G. J., Kipke, D. R., & Shain, W. (2012). Whole animal perfusion fixation for rodents. Journal of Visualized Experiments, 65, 1–9.  https://doi.org/10.3791/3564.CrossRefGoogle Scholar
  51. 51.
    Mainardes, R. M., Palmira, D., & Gremiao, M. (2009). Reversed phase HPLC determination of zidovudine in rat plasma and its pharmacokinetics after a single intranasal dose administration. Biological Research, 42, 357–364.  https://doi.org/10.4067/S0716-97602009000300010.CrossRefPubMedGoogle Scholar
  52. 52.
    Yuan, Z. Y., Hu, Y. L., & Gao, J. Q. (2015). Brain localization and neurotoxicity evaluation of polysorbate 80-modified chitosan nanoparticles in rats. PLoS One, 10, e0134722.  https://doi.org/10.1371/journal.pone.0134722.CrossRefPubMedGoogle Scholar
  53. 53.
    He, C., Cai, P., Li, J., Zhang, T., Lin, L., Abbasi, A. Z., et al. (2017). Blood-brain barrier-penetrating amphiphilic polymer nanoparticles deliver docetaxel for the treatment of brain metastases of triple negative breast cancer. Journal of Controlled Release, 246, 98–109.CrossRefGoogle Scholar
  54. 54.
    Shilo, M., Sharon, A., Baranes, K., Motiei, M., Lellouche, J.-P. M., & Popovtzer, R. (2015). The effect of nanoparticle size on the probability to cross the blood-brain barrier: An in-vitro endothelial cell model. Journal of Nanobiotechnology, 13, 19.  https://doi.org/10.1186/s12951-015-0075-7.CrossRefPubMedGoogle Scholar
  55. 55.
    Drobek, T., Spencer, N. D., & Heuberger, M. (2005). Compressing PEG brushes. Macromolecules, 38, 5254–5259.  https://doi.org/10.1021/ma0504217.CrossRefGoogle Scholar
  56. 56.
    Storm, G., Belliot, S. O., Daemen, T., & Lasic, D. D. (1995). Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Advanced Drug Delivery Reviews, 17, 31–48.  https://doi.org/10.1016/0169-409X(95)00039-A.CrossRefGoogle Scholar
  57. 57.
    Amoozgar, Z., & Yeo, Y. (2012). Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 4, 219–233.  https://doi.org/10.1002/wnan.1157.CrossRefPubMedGoogle Scholar
  58. 58.
    Łaszcz, M., Kosmacińska, B., Korczak, K., Śmigielska, B., Glice, M., Maruszak, W., et al. (2007). Study on compatibility of imatinib mesylate with pharmaceutical excipients. Journal of Thermal Analysis and Calorimetry, 88, 305–310.  https://doi.org/10.1007/s10973-006-8001-8.CrossRefGoogle Scholar
  59. 59.
    Manikandan, M., Kannan, K., & Manavalan, R. (2013). Compatibility studies of camptothecin with various pharmaceutical excipients used in the development of nanoparticle formulation. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 315–321.Google Scholar
  60. 60.
    Nagaich, U., & Gulati, N. (2016). Nanostructured lipid carriers (NLC) based controlled release topical gel of clobetasol propionate: Design and in vivo characterization. Drug Delivery and Translational Research, 6, 289–298.  https://doi.org/10.1007/s13346-016-0291-1.CrossRefPubMedGoogle Scholar
  61. 61.
    Ribeiro, L. N. M., Breitkreitz, M. C., Guilherme, V. A., da Silva, G. H. R., Couto, V. M., Castro, S. R., et al. (2017). Natural lipids-based NLC containing lidocaine: From pre-formulation to in vivo studies. European Journal of Pharmaceutical Sciences, 106, 102–112.  https://doi.org/10.1016/j.ejps.2017.05.060.CrossRefPubMedGoogle Scholar
  62. 62.
    Barre, J., Urien, S., Albengres, E., & Tillement, J. P. (1988). Plasma and tissue binding as determinants of drug body distribution. Possible applications to toxicological studies. Xenobiotica, 18(Suppl 1), 15–20.PubMedGoogle Scholar
  63. 63.
    Sane, R., Agarwal, S., & Elmquist, W. F. (2012). Brain distribution and bioavailability of elacridar after different routes of administration in the mouse. Drug Metabolism and Disposition, 40, 1612–1619.  https://doi.org/10.1124/dmd.112.045930.CrossRefPubMedGoogle Scholar
  64. 64.
    Lockman, P. R., Koziara, J. M., Mumper, R. J., & Allen, D. D. (2004). Nanoparticle surface charges alter blood–brain barrier integrity and permeability. Journal of Drug Targeting, 12, 635–641.  https://doi.org/10.1080/10611860400015936.CrossRefPubMedGoogle Scholar
  65. 65.
    Voigt, N., Henrich-Noack, P., Kockentiedt, S., Hintz, W., Tomas, J., & Sabel, B. A. (2014). Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 87, 19–29.  https://doi.org/10.1016/j.ejpb.2014.02.013.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tapash Chakraborty
    • 1
  • Malay K. Das
    • 1
    Email author
  • Lopamudra Dutta
    • 2
  • Biswajit Mukherjee
    • 2
  • Sanjoy Das
    • 1
  • Anupam Sarma
    • 1
  1. 1.Drug Delivery Research Laboratory, Department of Pharmaceutical SciencesDibrugarh UniversityDibrugarhIndia
  2. 2.Department of Pharmaceutical TechnologyDibrugarh UniversityDibrugarhIndia

Personalised recommendations