Surface Modification of Nanoparticles to Oppose Uptake by the Mononuclear Phagocyte System

  • Komal Parmar
  • Jayvadan K. Patel


Drug delivery has become an important aspect of medicine field with invention of specific potent molecules. New possibilities by understanding the disease pathways are emerging for its treatment and prevention at early basis. This provides development of customized systems that are designed to achieve specific control. This chapter provides an overview of recent advances in surface modification of nanoparticles to oppose uptake by mononuclear phagocytic system in order to achieve targeted drug delivery.


Targeted nanotechnology Surface modification MPS 


  1. 1.
    De Jong, W. H., & Borm, P. J. A. (2008). Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 3(2), 133–149.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Siafaka, P., Betsiou, M., Tsolou, A., et al. (2015). Synthesis of folate-pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor over expressing breast cancer cells. Journal of Materials Science. Materials in Medicine, 26(12), 275.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kreuter, J. (2007). Nanoparticles. A historical perspective. International Journal of Pharmaceutics, 331(1), 1–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Belhadj, Z., Zhan, C., Ying, M., et al. (2017). Multifunctional targeted liposomal drug delivery for efficient glioblastoma treatment. Oncotarget, 8(40), 66889–66900.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Rehman, M., Ihsan, A., Madni, A., et al. (2017). Solid lipid nanoparticles for thermoresponsive targeting.evidence from spectrophotometry, electrochemical, and cytotoxicity studies. International Journal of Nanomedicine, 12, 8325–8336.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Du, Y., Xia, L., Jo, A., et al. (2018). Synthesis and evaluation of doxorubicin-loaded gold nanoparticles for tumor-targeted drug delivery. Bioconjugate Chemistry, 29(2), 420–430.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Lin, Y. Q., Zhang, J., Liu, S. J., & Ye, H. (2018). Doxorubicin loaded silica nanoparticles with dual modification as a tumor-targeted drug delivery system for colon cancer therapy. Journal of Nanoscience and Nanotechnology, 18(4), 2330–2336.PubMedCrossRefGoogle Scholar
  8. 8.
    Singh, N., Sachdev, A., & Gopinath, P. (2018). Polysaccharide functionalized single walled carbon nanotubes as nanocarriers for delivery of curcumin in lung cancer cells. Journal of Nanoscience and Nanotechnology, 18(3), 1534–1541.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Zhong, P., Qiu, M., Zhang, J., et al. (2017). cRGD-installed docetaxel-loaded mertansine prodrug micelles: Redox-triggered ratio metric dual drug release and targeted synergistic treatment of B16F10 melanoma. Nanotechnology, 28(29), 295103.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang, L., Zhang, H., Qin, A., Jin, Q., Tang, B. Z., & Ji, J. (2016). Theranostic hyaluronic acid prodrug micelles with aggregation-induced emission characteristics for targeted drug delivery. Science China Chemistry, 59(12), 1609–1615.CrossRefGoogle Scholar
  11. 11.
    Nabavizadeh, F., Fanaei, H., Imani, A., et al. (2016). Evaluation of nanocarrier targeted drug delivery of capecitabine-pamam dendrimer complex in a mice colorectal cancer model. Acta Medica Iranica, 54(8), 485–493.PubMedGoogle Scholar
  12. 12.
    Moon, S. G., Thambi, T., Phan, V. H. G., Kim, S. H., & Lee, D. S. (2017). Injectable hydrogel-incorporated cancer cell-specific cisplatin releasing nanogels for targeted drug delivery. Journal of Materials Chemistry B, 5, 7140–7152.CrossRefGoogle Scholar
  13. 13.
    Boche, M., & Pokharkar, V. (2017). Quetiapine nanoemulsion for intranasal drug delivery: Evaluation of brain-targeting efficiency. AAPS PharmSciTech, 18(3), 686–696.PubMedCrossRefGoogle Scholar
  14. 14.
    Kraft, J. C., McConnachie, L. A., Koehn, J., et al. (2017). Long-acting combination anti-HIV drug suspension enhances and sustains higher drug levels in lymph node cells than in blood cells and plasma. AIDS, 31(6), 765–770.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Parboosing, R., Maguire, G. E. M., Govender, P., & Kruger, H. G. (2012). Nanotechnology and the treatment of HIV infection. Viruses, 4(4), 488–520.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kim, P. S., & Read, S. W. (2010). Nanotechnology and HIV: Potential applications for treatment and prevention. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2(6), 693–702.PubMedCrossRefGoogle Scholar
  17. 17.
    Kumar, L., Verma, S., Prasad, D. N., Bhardwaj, A., Vaidya, B., & Jain, A. K. (2015). Nanotechnology. A magic bullet for HIV AIDS treatment. Artificial Cells Nanomedicine and Biotechnology, 43(2), 71–86.CrossRefGoogle Scholar
  18. 18.
    Sanna, V., Pala, N., & Sechi, M. (2014). Targeted therapy using nanotechnology: Focus on cancer. International Journal of Nanomedicine, 9, 467–483.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kim, G. J., & Nie, S. (2005). Targeted cancer nanotherapy. Materials Today, 8(8), 28–33.CrossRefGoogle Scholar
  20. 20.
    Liu, M., Li, M., Wang, G., et al. (2014). Heart-targeted nanoscale drug delivery systems. Journal of Biomedical Nanotechnology, 10(9), 2038–2062.PubMedCrossRefGoogle Scholar
  21. 21.
    Colzi, I., Troyan, A. N., Perito, B., et al. (2015). Antibiotic delivery by liposomes from prokaryotic microorganisms: Similia cum similis works better. European Journal of Pharmaceutics and Biopharmaceutics, 94, 411–418.PubMedCrossRefGoogle Scholar
  22. 22.
    Drulis-Kawa, Z., & Dorotkiewicz-Jach, A. (2010). Liposomes as delivery systems for antibiotics. International Journal of Pharmaceutics, 387(1–2), 187–198.PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang, X., Wu, Y., Zhang, M., et al. (2017). Sodium cholate-enhanced polymeric micelle system for tumor-targeting delivery of paclitaxel. International Journal of Nanomedicine, 12, 8779–8799.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Clares, B., Ruiz, M. A., Gallardo, V., & Arias, J. L. (2012). Drug delivery to inflammation based on nanoparticles surface decorated with biomolecules. Current Medicinal Chemistry, 19(19), 3203–3211.PubMedCrossRefGoogle Scholar
  25. 25.
    Yang, Z., Ma, H., Jin, Z., et al. (2017). BSA-coated fluorescent organic–inorganic hybrid silica nanoparticles preparation and drug delivery. New Journal of Chemistry, 41, 1637–1644.CrossRefGoogle Scholar
  26. 26.
    Bi, D., Zhao, L., Yu, R., et al. (2018). Surface modification of doxorubicin-loaded nanoparticles based on polydopamine with pH-sensitive property for tumor targeting therapy. Drug Delivery, 25(1), 564–575.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Parodi, A., Haddix, S. G., Taghipour, N., et al. (2014). Bromelain surface modification increases the diffusion of silica nanoparticles in the tumor extracellular matrix. ACS Nano, 8(10), 9874–9883.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Gupta, A. K., & Curtis, A. S. (2004). Surface modified superparamagnetic nanoparticles for drug delivery. interaction studies with human fibroblasts in culture. Journal of Materials Science: Materials in Medicine, 15(4), 493–496.PubMedGoogle Scholar
  29. 29.
    Venkatasubbu, G. D., Ramasamy, S., Avadhani, G. S., Ramakrishnan, V., & Kumar, J. (2013). Surface modification and paclitaxel drug delivery of folic acid modified polyethylene glycol functionalized hydroxyapatite nanoparticles. Powder Technology, 235, 437–442.CrossRefGoogle Scholar
  30. 30.
    Storm, G., Belliot, S. O., Daeman, T., & Lasic, D. D. (1995). Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Advanced Drug Delivery Reviews, 17(1), 31–48.CrossRefGoogle Scholar
  31. 31.
    Wang, X., Sun, X., Lao, J., et al. (2014). Multifunctional grapheme quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids and Surfaces B: Biointerfaces, 122, 638–644.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Aggarwal, P., Hall, J. B., McLeland, C. B., Dobrovolskaia, M. A., & McNeil, S. E. (2009). Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Advanced Drug Delivery Reviews, 61(6), 428–437.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Mirshafiee, V., Kim, R., Park, S., Mahmoudi, M., & Kraft, M. L. (2016). Impact of protein pre-coating on the protein corona composition and nanoparticle cellular uptake. Biomaterials, 75, 295–304.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Amoozgar, Z., & Yeo, Y. (2012). Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 4(2), 219–233.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gustafson, H. H., Holt-Casper, D., Grainger, D. W., & Ghandehari, H. (2015). Nanoparticle uptake: The phagocyte problem. Nano Today, 10(4), 487–510.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wei, W., Zhang, X., Chen, X., Zhou, M., Xu, R., & Zhang, X. (2016). Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery. Nanoscale, 8(15), 8118–8125.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Owens, D. E., III, & Peppas, N. A. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics, 307(1), 93–102.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Alexis, F., Pridgen, E., Molnar, L. K., & Farokhzad, O. C. (2008). Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular Pharmaceutics, 5(4), 505–515.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Gref, R., Luck, M., Quellec, P., et al. (2000). ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG). Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B: Biointerfaces, 18(3–4), 301–313.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Dos Santos, N., Allen, C., Doppen, A. M., et al. (2007). Influence of poly(ethylene glycol) grafting density and polymer length on liposomes: Relating plasma circulation lifetimes to protein binding. Biochimica et Biophysica Acta, 1768(6), 1367–1377.PubMedCrossRefGoogle Scholar
  41. 41.
    Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T., & Dawson, K. A. (2008). Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14265–14270.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Shi, B., Fang, C., & Pei, Y. (2006). Stealth PEG-PHDCA niosomes: Effects of chain length of PEG and particle size on niosomes surface properties, in vitro drug release, phagocytic uptake, in vivo pharmacokinetics and antitumor activity. Journal of Pharmaceutical Sciences, 95(9), 1873–1887.PubMedCrossRefGoogle Scholar
  43. 43.
    Nagayama, S., Ogawara, K., Fukuoka, Y., Higaki, K., & Kimura, T. (2007). Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. International Journal of Pharmaceutics, 342(1–2), 215–221.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Fang, C., Shi, B., Pei, Y. Y., Hong, M. H., Wu, J., & Chen, H. Z. (2006). In vivo tumor targeting of tumor necrosis factor-alpha-loaded stealth nanoparticles: Effect of MePEG molecular weight and particle size. European Journal of Pharmaceutical Sciences, 27(1), 27–36.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Shubhra, Q. T. H., Toth, J., Gyenis, J., & Feczko, T. (2014). Poloxamers for surface modification of hydrophobic drug carriers and their effects on drug delivery. Polymer Reviews, 54(1), 112–138.CrossRefGoogle Scholar
  46. 46.
    Santander-Ortega, M. J., Jódar-Reyes, A. B., Csaba, N., Bastos-González, D., & Ortega-Vinuesa, J. L. (2006). Colloidal stability of Pluronic F68-coated PLGA nanoparticles. A variety of stabilisation mechanisms. Journal of Colloid and Interface Science, 302(2), 522–529.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Stolnik, S., Daudali, B., Arien, A., et al. (2001). The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochimica et Biophysica Acta, 1514(2), 261–279.PubMedCrossRefGoogle Scholar
  48. 48.
    Redhead, H. M., Davis, S. S., & Illum, L. (2001). Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: In vitro characteristics and in vivo evaluation. Journal of Controlled Release, 70(3), 353–363.PubMedCrossRefGoogle Scholar
  49. 49.
    Azzi, S., Hebda, J. K., & Gavard, J. (2013). Vascular permeability and drug delivery in cancers. Frontiers in Oncology, 3, 211.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Iyer, A. K., Khaled, G., Fang, J., & Maeda, H. (2006). Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discovery Today, 11(17–18), 812–818.PubMedCrossRefGoogle Scholar
  51. 51.
    Thakor, A. S., & Gambhir, S. S. (2013). Nanooncology. The future of cancer diagnosis and therapy. CA: A Cancer Journal for Clinicians, 63(6), 395–418.Google Scholar
  52. 52.
    Charrois, G. J. R., & Allen, T. M. (2003). Rate of biodistribution of STEALTH® liposomes to tumor and skin: Influence of liposome diameter and implications for toxicity and therapeutic activity. Biochimica et Biophysica Acta, 1609(1), 102–108.PubMedCrossRefGoogle Scholar
  53. 53.
    Mei, K. C., Bai, J., Lorrio, S., Wang, J. T. W., & Al-Jamal, K. T. (2016). Investigating the effect of tumor vascularization on magnetic targeting in vivo using retrospective design of experiment. Biomaterials, 106, 276–285.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Greish, K., Nagamitsu, A., Fang, J., & Maeda, H. (2005). Copoly(styrene-maleic acid)-Pirarubicin micelles: High tumor-targeting efficiency with little toxicity. Bioconjugate Chemistry, 16(1), 230–236.PubMedCrossRefGoogle Scholar
  55. 55.
    Yang, C., Liu, H. Z., Lu, W. D., & Fu, Z. X. (2011). PEG-liposomal oxaliplatin potentialization of antitumor efficiency in a nude mouse tumor-xenograft model of colorectal carcinoma. Oncology Reports, 25(6), 1621–1628.PubMedGoogle Scholar
  56. 56.
    Yang, L., Kuang, H., Zhang, W., Aguilar, Z. P., Wei, H., & Xu, H. (2017). Comparisons of the biodistribution and toxicological examinations after repeated intravenous administration of silver and gold nanoparticles in mice. Scientific Reports, 7, 3303. Scholar
  57. 57.
    Tammam, S., Mathur, S., & Afifi, N. (2012). Preparation and biopharmaceutical evaluation of tacrolimus loaded biodegradable nanoparticles for liver targeting. Journal of Biomedical Nanotechnology, 8(3), 439–449.PubMedCrossRefGoogle Scholar
  58. 58.
    Gu, J., Su, S., Zhu, M., et al. (2012). Targeted doxorubicin delivery to liver cancer cells by PEGylated mesoporous silica nanoparticles with a pH-dependent release profile. Microporous and Mesoporous Materials, 161, 160–167.CrossRefGoogle Scholar
  59. 59.
    Liu, D., Wu, W., Ling, J., Wen, S., Gu, N., & Zhang, X. (2011). Effective PEGylation of iron oxide nanoparticles for high performance in vivo cancer imaging. Advanced Functional Materials, 21(8), 1498–1504.CrossRefGoogle Scholar
  60. 60.
    Agarwal, A., Saraf, S., Asthana, A., Gupta, U., Gajbhiye, V., & Jain, N. K. (2008). Ligand based dendritic systems for tumor targeting. International Journal of Pharmaceutics, 350(1–2), 3–13.PubMedCrossRefGoogle Scholar
  61. 61.
    van Dongen, M. A., Silpe, J. E., Dougherty, C. A., et al. (2014). Avidity mechanism of dendrimer-folic acid conjugates. Molecular Pharmaceutics, 11(5), 1696–1706.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Poon, Z., Chen, S., Engler, A. C., et al. (2010). Ligand-clustered “patchy” nanoparticles for modulated cellular uptake and in vivo tumor targeting. Angewandte Chemie (International Edition in English), 49(40), 7266–7270.CrossRefGoogle Scholar
  63. 63.
    Quintana, A., Raczka, E., Piehler, L., et al. (2002). Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceutical Research, 19(9), 1310–1316.PubMedCrossRefGoogle Scholar
  64. 64.
    Quadir, M. A., Morton, S. W., Mensah, L. B., et al. (2017). Ligand-decorated click polypeptide derived nanoparticles for targeted drug delivery applications. Nanomedicine, 13(5), 1797–1808.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Mathew, A., Fukuda, T., Nagaoka, Y., et al. (2012). Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One, 7(3), e32616.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Li, J., & Sabliov, C. (2013). PLA/PLGA nanoparticles for delivery of drugs across the blood-brain barrier. Nanotechnology Reviews, 2(3), 241–257.CrossRefGoogle Scholar
  67. 67.
    Song, Y., Du, D., Li, L., Xu, J., Dutta, P., & Lin, Y. (2017). In vitro study of receptor-mediated silica nanoparticles delivery across blood–brain barrier. ACS Applied Materials and Interfaces, 9(24), 20410–20416.PubMedCrossRefGoogle Scholar
  68. 68.
    Wang, Z. H., Wang, Z. Y., Sun, C. S., Wang, C. Y., Jiang, T. Y., & Wang, S. L. (2010). Trimethylated chitosan-conjugated PLGA nanoparticles for the delivery of drugs to the brain. Biomaterials, 31(5), 908–915.PubMedCrossRefGoogle Scholar
  69. 69.
    Barenholz, Y. C. (2012). Doxil®-the first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160(2), 117–134.PubMedCrossRefGoogle Scholar
  70. 70.
    Yuan, D. M., Lv, Y. L., Yao, Y. W., et al. (2012). Efficacy and safety of Abraxane in treatment of progressive and recurrent non-small cell lung cancer patients. A retrospective clinical study. Thoracic Cancer, 3(4), 341–347.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Swenson, C. E., Perkins, W. R., Roberts, P., & Janoff, A. S. (2001). Liposome technology and the development of Myocet™ (liposomal doxorubicin citrate). The Breast, 10(2), 1–7.CrossRefGoogle Scholar
  72. 72.
    Rosenthal, E., Poizot-Martin, I., Saint-Marc, T., Spano, J. P., & Cacoub, P. (2002). Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. American Journal of Clinical Oncology, 25(1), 57–59.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Fasol, U., Frost, A., Büchert, M., et al. (2012). Vascular and pharmacokinetic effects of EndoTAG-1 in patients with advanced cancer and liver metastasis. Annals of Oncology, 23(4), 1030–1036.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Pedro, R. N., Thekke-Adiyat, T., Goel, R., et al. (2010). Use of tumor necrosis factor-alpha-coated gold nanoparticles to enhance radiofrequency ablation in a translational model of renal tumors. Urology, 76(2), 494–498.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Gaur, S., Wang, Y., Kretzner, L., Chen, L., Yen, T., et al. (2014). Pharmacodynamic and pharmacogenomic study of the nanoparticle conjugate of camptothecin CRLX101 for the treatment of cancer. Nanomedicine, 10(7), 1477–1486.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Von Hoff, D. D., Mita, M. M., Ramanathan, R. K., et al. (2016). Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clinical Cancer Research, 22(13), 3157–3163.CrossRefGoogle Scholar
  77. 77.
    Werner, M. E., Cummings, N. D., Sethi, M., et al. (2013). Preclinical evaluation of Genexol-PM, a nanoparticle formulation of paclitaxel, as a novel radiosensitizer for the treatment of non-small cell lung cancer. International Journal of Radiation Oncology, Biology, Physics, 86(3), 463–468.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Lu, Y. J., Wei, K. C., Ma, C. C., Yang, S. Y., & Chen, J. P. (2012). Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids and Surfaces B: Biointerfaces, 89, 1–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Hou, L., Feng, Q., Wang, Y., et al. (2016). Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer. Nanotechnology, 27(1), 015701.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ruan, S., Yuan, M., Zhang, L., et al. (2015). Tumor microenvironment sensitive doxorubicin delivery and release to glioma using angiopep-2 decorated gold nanoparticles. Biomaterials, 37, 425–435.PubMedCrossRefGoogle Scholar
  81. 81.
    Wang, R. H., Bai, J., Deng, J., Fang, C. J., & Chen, X. (2017). TAT-modified gold nanoparticle carrier with enhanced anticancer activity and size effect on overcoming multidrug resistance. ACS Applied Materials and Interfaces, 9(7), 5828–5837.PubMedCrossRefGoogle Scholar
  82. 82.
    Locatelli, E., Naddaka, M., Uboldi, C., et al. (2014). Targeted delivery of silver nanoparticles and alisertib: In vitro and in vivo synergistic effect against glioblastoma. Nanomedicine (London, England), 9(6), 839–849.CrossRefGoogle Scholar
  83. 83.
    Wei, Y., Gao, L., Wang, L., et al. (2017). Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy. Drug Delivery, 24(1), 681–691.PubMedCrossRefGoogle Scholar
  84. 84.
    Pooja, D., Kulhari, H., Kuncha, M., et al. (2016). Improving efficacy, oral bioavailability, and delivery of paclitaxel using protein-grafted solid lipid nanoparticles. Molecular Pharmaceutics, 13(11), 3903–3912.PubMedCrossRefGoogle Scholar
  85. 85.
    Neves, A. R., Queiroz, J. F., & Reis, S. (2016). Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. Journal of Nanbiotechnology, 14, 27. Scholar
  86. 86.
    Zong, H., Thomas, T. P., Lee, K. H., et al. (2012). Bifunctional PAMAM dendrimer conjugates of folic acid and methotrexate with defined ratio. Biomacromolecules, 13(4), 982–991.PubMedCrossRefGoogle Scholar
  87. 87.
    Lu, L., Ding, Y., Zhang, Y., et al. (2018). Antibody-modified liposomes for tumor-targeting delivery of timosaponin AIII. International Journal of Nanomedicine, 13, 1927–1944.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Zhang, S., Langer, R., & Traverso, G. (2017). Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. NanoToday, 16, 82–96.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Komal Parmar
    • 1
  • Jayvadan K. Patel
    • 2
  1. 1.ROFEL, Shri G.M. Bilakhia College of PharmacyVapiIndia
  2. 2.Nootan Pharmacy College, Faculty of PharmacySankalchand Patel UniversityVisnagarIndia

Personalised recommendations