Advertisement

Surface Modifications of Liposomes for Drug Targeting

  • Doniya Milani
  • Umi Athiyah
  • Dewi Melani Hariyadi
  • Yashwant V PathakEmail author
Chapter

Abstract

Medical treatment through the use of pharmaceuticals is dependent on the ability of therapeutic agents to reach their intended targets while evading unintended interactions, endosomal sequestration, and degradation. By developing targeted therapies, our treatments of different diseases can be tremendously improved in ways that not only enhance the functionality of relevant drugs, but also improve the patients’ experiences. Liposomes are nanocarriers that encapsulate their payloads, protecting active ingredients from biological environments and degradation. Their use in nanomedicine has the ability to reshape drug administration, from improved specificity and prolonged circulation to decreased cytotoxicity and fewer negative side effects. The efficacy and functionality of liposomes can be further refined and enhanced through surface modification. By conjugating liposomes with various moieties, drug delivery can become a much more targeted process.

Keywords

Surface modification Nanocarriers Nanotechnology Cell targeting Drug targeting Drug delivery Liposomes Stealth Targeted therapy PEG 

References

  1. 1.
    Fakhar ud, D., et al. (2017). Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. International Journal of Nanomedicine, 12, 7291–7309. PMC. Web: August 28, 2018, from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5634382/
  2. 2.
    Siafaka, P. I., Okur, N. Ü., Karavas, E., & Bikiaris, D. N. (2016). Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: Current status and uses. International Journal of Molecular Sciences, 17(9), 1440. MDPI. Accessed August 28, 2018, from http://www.mdpi.com/1422-0067/17/9/1440/htm
  3. 3.
    Kothalawala, N., Mudalige, T. K., Sisco, P., & Linder, S. W. (2018). Novel analytical methods to assess the chemical and physical properties of liposomes. Journal of Chromatography B, 1091, 14–20.CrossRefGoogle Scholar
  4. 4.
    Bozzuto, G., & Molinari, A. (2015). Liposomes as nanomedical devices. International Journal of Nanomedicine, 975–999.  https://doi.org/10.2147/ijn.s68861.
  5. 5.
    Riaz, M., et al. (2018). Surface Functionalization and targeting strategies of liposomes in solid tumor therapy: A review. International Journal of Molecular Sciences, 19, 195.CrossRefGoogle Scholar
  6. 6.
    Sriraman, S. K., Aryasomayajula, B., & Torchilin, V. P. (2014). Barriers to drug delivery in solid tumors. Tissue Barriers, 2, e29528.  https://doi.org/10.4161/tisb.29528.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Akbarzadeh, A., et al. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8(1), 102.  https://doi.org/10.1186/1556-276X-8-102. PMC. Web: August 22, 2018.
  8. 8.
    Hofheinz, R. D., Gnad-Vogt, S. U., Beyer, U., & Hochhaus, A. (2005). Liposomal encapsulated anti-cancer drugs. Anti-Cancer Drugs, 16, 691–707.  https://doi.org/10.1097/01.cad.0000167902.53039.5a.CrossRefPubMedGoogle Scholar
  9. 9.
    Hatakeyama, H., Akita, H., & Harashima, H. (2013). The polyethyleneglycol dilemma: Advantage and disadvantage of PEGylation of liposomes for systemic genes and nucleic acids delivery to tumors. Biological and Pharmaceutical Bulletin, 36, 892–899.CrossRefGoogle Scholar
  10. 10.
    Immordino, M. L., Dosio, F., & Cattel, L. (2006). Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. International Journal of Nanomedicine, 1(3), 297–315. Print.CrossRefGoogle Scholar
  11. 11.
    Liu, X., Peng, H., & Wang, Q. (2014). Surface engineering of liposomal formulations for targeted drug delivery. Chemical Engineering and Process Techniques, 2(1), 1024.Google Scholar
  12. 12.
    Milla, P., Dosio, F., & Cattel, L. (2012). PEGylation of proteins and liposomes: A powerful and flexible strategy to improve the drug delivery. Current Drug Metabolism, 13, 105.  https://doi.org/10.2174/138920012798356934.CrossRefGoogle Scholar
  13. 13.
    Shen, Z., Ye, H., Kröger, M., & Li, Y. (2018). Aggregation of polyethylene glycol polymers suppresses receptor-mediated endocytosis of PEGylated liposomes. Nanoscale, 10, 4545–4560.CrossRefGoogle Scholar
  14. 14.
    Fisher, R. K., et al. (2017). Improving the efficacy of liposome-mediated vascular gene therapy via lipid surface modifications. Journal of Surgical Research, 219, 136–144.CrossRefGoogle Scholar
  15. 15.
    Harris, J. M., Martin, N. E., & Modi, M. (2001). Pegylation: a novel process for modifying pharmacokinetics. Clinical Pharmacokinetics, 40(7), 539–551.CrossRefGoogle Scholar
  16. 16.
    Roberts, M. J., Bentley, M. D., & Harris, J. M. (2002). Chemistry for peptide and protein PEGylation. Advanced Drug Delivery Reviews, 54(4), 459–476.CrossRefGoogle Scholar
  17. 17.
    Suk, J. S., et al. (2016). PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99(Pt A), 28–51. PMC. Web: August 23, 2018 from https://www.ncbi.nlm.nih.gov/pubmed/26456916 CrossRefGoogle Scholar
  18. 18.
    Matsumura, Y., & Maeda, H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Research, 46, 6387–6392.PubMedGoogle Scholar
  19. 19.
    Hobbs, S. K., et al. (1998). Regulation of transport pathways in tumor vessels: Role of tumor type and microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 95(8), 4607–4612. Print.CrossRefGoogle Scholar
  20. 20.
    Qi, R., Gao, Y., Tang, Y., He, R. R., Liu, T. L., He, Y., Sun, S., Li, B. Y., Li, Y. B., & Liu, G. (2009). PEG-conjugated PAMAM dendrimers mediate efficient intramuscular gene expression. The AAPS Journal, 11, 395–405.CrossRefGoogle Scholar
  21. 21.
    Jevprasesphant, R., Penny, J., Jalal, R., Attwood, D., McKeown, N. B., & D'Emanuele, A. (2003). The influence of surface modification on the cytotoxicity of PAMAM dendrimers. International Journal of Pharmaceutics, 252, 263–266.  https://doi.org/10.1016/S0378-5173(02)00623-3.CrossRefPubMedGoogle Scholar
  22. 22.
    Khutoryanskiy, V. V. (2018). Beyond PEGylation: Alternative surface-modification of nanoparticles with mucus-inert biomaterials. Advanced Drug Delivery Reviews, 124, 140–149.CrossRefGoogle Scholar
  23. 23.
    Sosnik, A., das Neves, J., & Sarmento, B. (2014). Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Progress in Polymer Science, 39, 2030–2075.CrossRefGoogle Scholar
  24. 24.
    Schneider, C. S., et al. (2017). Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Science Advances, 3, e1601556.CrossRefGoogle Scholar
  25. 25.
    Mert, O., et al. (2012). A poly(ethylene glycol)-based surfactant for formulation of drug-loaded mucus penetrating particles. Journal of Controlled Release, 157, 455–460.CrossRefGoogle Scholar
  26. 26.
    Xu, Q. G., Boylan, N. J., Cai, S. T., Miao, B., Patel, H., & Hanes, J. (2013). Scalable method to produce biodegradable nanoparticles that rapidly penetrate human mucus. Journal of Controlled Release, 170, 279–286.CrossRefGoogle Scholar
  27. 27.
    Guerrini, L., Alvarez-Puebla, R. A., & Pazos-Perez, N. (2018). Surface modifications of nanoparticles for stability in biological fluids. Materials, 11, 1154.CrossRefGoogle Scholar
  28. 28.
    Gref, R., Lück, M., Quellec, P., Marchand, M., Dellacherie, E., Harnisch, S., Blunk, T., & Müller, R. H. (2000). ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B: Biointerfaces, 18, 301–313.CrossRefGoogle Scholar
  29. 29.
    Thanh, N. T. K., & Green, L. A. W. (2010). Functionalization of nanoparticles for biomedical applications. Nano Today, 5, 213–230.CrossRefGoogle Scholar
  30. 30.
    Carril, M., Padro, D., Del Pino, P., Carrillo-Carrion, C., Gallego, M., & Parak, W. J. (2017). In situ detection of the protein corona in complex environments. Nature Communications, 8, 1542.CrossRefGoogle Scholar
  31. 31.
    Zhang, G., Yang, Z., Lu, W., Zhang, R., Huang, Q., Tian, M., Li, L., Liang, D., & Li, C. (2009). Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. Biomaterials, 30, 1928–1936.CrossRefGoogle Scholar
  32. 32.
    Rahme, K., Nolan, M. T., Doody, T., McGlacken, G. P., Morris, M. A., O’Driscoll, C., & Holmes, J. D. (2013). Highly stable pegylated gold nanoparticles in water: Applications in biology and catalysis. RSC Advances, 3, 21016–21024.CrossRefGoogle Scholar
  33. 33.
    Longmire, M., Choyke, P. L., & Kobayashi, H. (2008). Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine, 3, 703–717.CrossRefGoogle Scholar
  34. 34.
    Han, H.-S., et al. (2013). Spatial charge configuration regulates nanoparticle transport and binding behavior in vivo. Angewandte Chemie (International edition in English), 52(5), 1414–1419. PMC. Web: August 24, 2018.Google Scholar
  35. 35.
    Miteva, M., et al. (2015). Tuning PEGylation of mixed micelles to overcome intracellular and systemic siRNA delivery barriers. Biomaterials, 38, 97–107. PMC. Web: August 25, 2018.CrossRefGoogle Scholar
  36. 36.
    Mori, A., Klibanov, A. L., Torchilin, V. P., & Huang, L. (1991). Influence of the steric barrier activity of amphipathic poly(ethyleneglycol) and ganglioside GM1on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Letters, 284, 263–266.CrossRefGoogle Scholar
  37. 37.
    Gref, R., Domb, A., Quellec, P., et al. (1995). The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Advanced Drug Delivery Reviews, 16, 215–233.CrossRefGoogle Scholar
  38. 38.
    Owensiii, D., & Peppas, N. (2006). Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. International Journal of Pharmaceutics, 307, 93–102.CrossRefGoogle Scholar
  39. 39.
    He, Q., Zhang, J., Shi, J., Zhu, Z., Zhang, L., Bu, W., Guo, L., & Chen, Y. (2010). The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials, 31, 1085–1092.CrossRefGoogle Scholar
  40. 40.
    Yang, Q., Jones, S. W., Parker, C. L., Zamboni, W. C., Bear, J. E., & Lai, S. K. (2014). Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Molecular Pharmaceutics, 11, 1250–1258.CrossRefGoogle Scholar
  41. 41.
    Eloy, J. O., et al. (2014). Liposomes as carriers of hydrophilic small molecule drugs: Strategies to enhance encapsulation and delivery. Colloids and Surfaces B: Biointerfaces, 123, 345–363.CrossRefGoogle Scholar
  42. 42.
    Kajimoto, K., Katsumi, T., Nakamura, T., Kataoka, M., & Harashima, H. (2018). Liposome microencapsulation for the surface modification and improved entrapment of cytochrome c for targeted delivery. Journal of the American Oil Chemists Society, 95, 101–109.CrossRefGoogle Scholar
  43. 43.
    Nag, O. K., & Awasthi, V. (2013). Surface engineering of liposomes for stealth behavior. Pharmaceutics, 5(4), 542–569. PMC. Web: August 27, 2018.Google Scholar
  44. 44.
    Tirosh, O., et al. (1998). Hydration of polyethylene glycol-grafted liposomes. Biophysical Journal, 74(3), 1371–1379.CrossRefGoogle Scholar
  45. 45.
    Lehtonen, J. Y., & Kinnunen, P. K. (1995). Poly(ethylene Glycol)-induced and temperature-dependent phase separation in fluid binary phospholipid membranes. Biophysical Journal, 68(2), 525–535. PMC. Web: August 27, 2018.Google Scholar
  46. 46.
    Stark, B., Pabst, G., & Prassl, R. (2010). Long-term stability of sterically stabilized liposomes by freezing and freeze-drying: Effects of cryoprotectants on structure. European Journal of Pharmaceutical Sciences, 41, 546–555.  https://doi.org/10.1016/j.ejps.2010.08.010.CrossRefPubMedGoogle Scholar
  47. 47.
    Szebeni, J. (2005). Complement activation-related pseudoallergy: A new class of drug-induced acute immune toxicity. Toxicology, 216, 106–121.  https://doi.org/10.1016/j.tox.2005.07.023.CrossRefPubMedGoogle Scholar
  48. 48.
    Neun, B., Barenholz, Y., Szebeni, J., & Dobrovolskaia, M. (2018). Understanding the role of anti-PEG antibodies in the complement activation by doxil in vitro. Molecules, 23, 1700.CrossRefGoogle Scholar
  49. 49.
    Szebeni, J., Alving, C. R., Rosivall, L., Bunger, R., Baranyi, L., Bedocs, P., Toth, M., & Barenholz, Y. (2007). Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. Journal of Liposome Research, 17, 107–117.CrossRefGoogle Scholar
  50. 50.
    Chen, B. M., Su, Y. C., Chang, C. J., Burnouf, P. A., Chuang, K. H., Chen, C. H., Cheng, T. L., Chen, Y. T., Wu, J. Y., & Roffler, S. R. (2016). Measurement of pre-existing IgG and IgM antibodies against polyethylene glycol in healthy individuals. Analytical Chemistry, 88, 10661–10666.CrossRefGoogle Scholar
  51. 51.
    Yang, Q., Ma, Y., Zhao, Y., She, Z., Wang, L., Li, J., Wang, C., & Deng, Y. (2013). Accelerated drug release and clearance of pegylated epirubicin liposomes following repeated injections: A new challenge for sequential low-dose chemotherapy. International Journal of Nanomedicine, 8, 1257–1268.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Nag, O. K., Yadav, V. R., Hedrick, A., & Awasthi, V. (2013). Post-modification of preformed liposomes with novel non-phospholipid poly(ethylene glycol)-conjugated hexadecylcarbamoylmethyl hexadecanoic acid for enhanced circulation persistence in vivo. International Journal of Pharmaceutics, 446, 119–129.  https://doi.org/10.1016/j.ijpharm.2013.02.026.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Gabizon, A., Goren, D., Horowitz, A. T., Tzemach, D., Lossos, A., & Siegal, T. (1997). Long-circulating liposomes for drug delivery in cancer therapy: A review of biodistribution studies in tumor-bearing animals. Advanced Drug Delivery Reviews, 24, 337–344.  https://doi.org/10.1016/S0169-409X(96)00476-0.CrossRefGoogle Scholar
  54. 54.
    Cui, J., Li, C., Guo, W., Li, Y., Wang, C., Zhang, L., Zhang, L., Hao, Y., & Wang, Y. (2007). Direct comparison of two pegylated liposomal doxorubicin formulations: Is auc predictive for toxicity and efficacy? Journal of Controlled Release, 118, 204–215.  https://doi.org/10.1016/j.jconrel.2006.12.002.CrossRefPubMedGoogle Scholar
  55. 55.
    Yamada, A., Taniguchi, Y., Kawano, K., Honda, T., Hattori, Y., & Maitani, Y. (2008). Design of folate-linked liposomal doxorubicin to its antitumor effect in mice. Clinical Cancer Research, 14(24), 8161–8168.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Doniya Milani
    • 1
  • Umi Athiyah
    • 1
  • Dewi Melani Hariyadi
    • 2
    • 4
  • Yashwant V Pathak
    • 2
    • 3
    Email author
  1. 1.Faculty of PharmacyUniversitas AirlanggaSurabayaIndonesia
  2. 2.College of PharmacyUniversity of South FloridaTampaUSA
  3. 3.Adjunct professor at Faculty of PharmacyAirlangga UniversitySurabayaIndonesia
  4. 4.Faculty of Public HealthAirlangga UniversitySurabayaIndonesia

Personalised recommendations