Advertisement

Synthesis and Control of Silver Aggregates in Ion-Exchanged Silicate Glass by Thermal Annealing and Gamma Irradiation

  • Khaled FarahEmail author
  • Faouzi Hosni
  • Ahmed Hichem Hamzaoui
Chapter

Abstract

Samples of commercial silicate glass have been subjected to ion exchange by silver ions. The ion exchange was performed at 320 °C for periods from two minutes to one hour, in a molten mixture of AgNO3 and NaNO3 with a molar ratio of 1:99, 5:95 and 10:90. The ion exchange process was followed by different treatments: thermal annealing, gamma irradiation and their combined role in order to initiate the synthesis and control of silver aggregates in the surface of the glass matrix. UV-Visible absorption spectrometry results indicated that various states of silver existing in these glasses depend on heat treatment conditions. The silver ions (Ag+) exist in almost all conditions, neutral silver atoms (Ag0) exist only in samples subjected to heat treatment in the range of 250–450 °C, neutral silver aggregates (Ag0) produced by thermal annealing at 550 °C were responsible for the absorption bands observed from 305, 350 and 450 nm, respectively. The effect of gamma irradiation in doses from 10 to 100 kGy and thermal annealing on glass samples was also investigated. The main modification induced by gamma rays on the structure of silicate glass was the creation of colour centres, Non-Bridging Oxygen Hole Centres (NBOHCs) and trapped electrons. The (NBOHCs) defects caused the absorption of light. The Ag+ ions trapped electrons to form neutral silver Ag0. The first step of silver aggregation was observed, following the irradiation by gamma rays, as well as after thermal annealing. After annealing at 550 °C, silver atoms spread out over glass surface to form silver aggregates. An absorption band at 430 nm was observed characterizing the Surface Plasmon Resonance (SPR) of silver aggregates. The calculated average radius increases from 0.9 to 1.35 nm as the annealing time increased from 10 to 490 min. The average radius of nanoparticles varied as a function of absorbed dose. Unexpectedly, 10 kGy was found to be the optimally absorbed dose corresponding to the maximum of the nanoparticle’s average radius. The average radius of nanoparticles was decreased at a higher dose.

References

  1. 1.
    Seward TP (1980) J Non-Cryst Solids 40:499CrossRefGoogle Scholar
  2. 2.
    Rao KJ (2002) Structural chemistry of glasses. Elsevier Science, AmsterdamGoogle Scholar
  3. 3.
    Ageev LA, Miloslavskiĭ VK, Makovetskiĭ ED (2007) Opt Spectrosc 102:442CrossRefGoogle Scholar
  4. 4.
    Bandyopadhyay AK (2008) Nano materiels. New Age International, Kolkata, IndiaGoogle Scholar
  5. 5.
    Schulman JH, Ginther RJ, Klick CC, Alger RS, Levy RA (1951) J Appl Phys 22:1479CrossRefGoogle Scholar
  6. 6.
    Bach H, Neuroth N (1998) The properties of optical glass. Springer, BerlinCrossRefGoogle Scholar
  7. 7.
    Doremus RH (1964) J Chem Phys 40:2389CrossRefGoogle Scholar
  8. 8.
    Doremus RH (1965) Physics 42:414Google Scholar
  9. 9.
    Manikandan D, Mohan S, Magudapathy P, Nair KGM (2003) Phys B 325:86CrossRefGoogle Scholar
  10. 10.
    Ahmed AA, Abd-Allah EW (1995) J Am Ceram Soc 78:2777CrossRefGoogle Scholar
  11. 11.
    Kowal TM et al (2000) Nucl Instr Meth B 166:490CrossRefGoogle Scholar
  12. 12.
    Hofmeister H, Thiel S, Dubiel M, Schurig E (1997) Appl Phys Lett 70:1694CrossRefGoogle Scholar
  13. 13.
    Espiau de Lamaestre R et al (2008) Phys Rev B 76:205431CrossRefGoogle Scholar
  14. 14.
    Zhang J (2008) J Cryst Growth 310:234CrossRefGoogle Scholar
  15. 15.
    Farah K et al (2002) Current topics in ionizing radiation research, In: ed. by M Nenoi (InTech Open Access Publisher, Croatia), p. 603Google Scholar
  16. 16.
    Farah K et al (2007) Fundamental and applied spectroscopy. In: Seddiki E, Telmini M (eds) Conference Proceedings, vol. 935. AIP, Melville, New YorkGoogle Scholar
  17. 17.
    Farah K et al (2006) Radiat Meas 41:201CrossRefGoogle Scholar
  18. 18.
    Yamane M, Asahara Y (2004) Glasses for photonics. Cambridge University Press, Cambridge, UKGoogle Scholar
  19. 19.
    Ito T (1961) Bull Chem Soc Jpn 35:1312CrossRefGoogle Scholar
  20. 20.
    Piquet JL, Shelby JE (1985) J Am Ceram Soc 68:450CrossRefGoogle Scholar
  21. 21.
    Bach H, Baucke FGK, Duffy JA (1986) Chem Glasses 27:215Google Scholar
  22. 22.
    Shelby JE, Vitko J Jr, Non-Cryst J (1982) Solids 50:107Google Scholar
  23. 23.
    Spierings GACM, Non-Cryst J (1987) Solids 94:407Google Scholar
  24. 24.
    Paje SE, García MA, Llopis J, Villegas MA, Non-Cryst J (2003) Solids 318:239Google Scholar
  25. 25.
    Paje SE, Llopis J, Villegas MA, Fernández Navarro JM (1996) Appl Phys A 63:431CrossRefGoogle Scholar
  26. 26.
    Villegas MA et al (2005) Mater Res Bull 40:1210CrossRefGoogle Scholar
  27. 27.
    Shelby JE (2005) Introduction to glass science and technology. The Royal Society of Chemistry, Cambridge, UKGoogle Scholar
  28. 28.
    Chopinet MH, Lizarazu D, Rocanière C (2002) C R Chim 5:939CrossRefGoogle Scholar
  29. 29.
    Kaganovskii Yu et al (2007) J Non-Cryst Solids 353:2263CrossRefGoogle Scholar
  30. 30.
    García MA et al (2011) J Phys D: Appl Phys 32:975Google Scholar
  31. 31.
    Ahmed AA et al (1992) In: Proceeding of 16th international congress on glass, vol 4, Madrid, Spain, p 503Google Scholar
  32. 32.
    Paje SE et al (1998) Appl Phys A 67:429CrossRefGoogle Scholar
  33. 33.
    Sarker S, Kumar J, Chakravorty D (1983) J Mater Sci 18:250CrossRefGoogle Scholar
  34. 34.
    Schreurs JWH (1967) J Chem Phys 47(2):818CrossRefGoogle Scholar
  35. 35.
    Battaglin G et al (1996) Nucl Instrum Methods B 116:527CrossRefGoogle Scholar
  36. 36.
    Griscom DL (1984) J Non-Cryst Solids 64:229CrossRefGoogle Scholar
  37. 37.
    Farah K et al (2014) Nucl Instr Meth B 323:36CrossRefGoogle Scholar
  38. 38.
    Bellouni J, Mostafavi M (1999) Metal clusters in chemistryIn: Braunstein P, Oro LA, Raithby PR (eds) (Wiley-VCH Verlag GmbH, Weinheim, Germany 1999), p 1213Google Scholar
  39. 39.
    Galeneer FL et al (1993) Phys Rev B 47:7760CrossRefGoogle Scholar
  40. 40.
    Farah K et al (2010) Nucl Instr Meth A 614:137CrossRefGoogle Scholar
  41. 41.
    Mennig M, Berg KJ (1991) Mater Sci Eng B9:421CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Khaled Farah
    • 1
    • 2
    Email author
  • Faouzi Hosni
    • 1
    • 3
  • Ahmed Hichem Hamzaoui
    • 4
  1. 1.Energy and Matter Research Laboratory (LR16CNSTN02)National Centre for Nuclear Sciences and TechnologySidi-ThabetTunisia
  2. 2.Higher Institute of Transportation and LogisticsUniversity of SousseSousseTunisia
  3. 3.Faculty of SciencesUniversity of BishaBishaSaudi Arabia
  4. 4.Laboratoire de Valorisation des RessourcesNaturelles et Matériaux de RécupérationCentre National de Rechercheen Sciences des MatériauxBorj-Cedria, Hammam-LifTunisia

Personalised recommendations