Advertisement

Use of Ion-Exchange Resins in Dehydration Reactions

  • María José Ginés-Molina
  • Juan A. Cecilia
  • Cristina García-Sancho
  • Ramón Moreno-Tost
  • Pedro Maireles-TorresEmail author
Chapter

Abstract

This chapter reviews the main uses of ion-exchange resins as catalysts for dehydration processes. In this regard, the dehydration of alcohols to alkenes is dealt with, and mainly to ethers, since these latter processes require a lower reaction temperature. Moreover, the large variety of ethers (linear, branched, cyclic), which can be synthesized in the presence of ion-exchange resins, has attracted the interest of many research groups, and important industrial applications have been envisaged. Another group of hydroxylated compounds, that is, bearing OH groups susceptible to be dehydrated, are carbohydrates. Monosaccharides such as glucose, fructose and xylose, mainly present in the lignocellulosic biomass, can be transformed, in the presence of ion-exchange resins, into platform molecules. Among them, furfural and 5-hydroxymethylfurfural possess a great potential as they can be utilized as building blocks for the production of high value-added chemicals and materials. The main catalytic processes will be described, providing detailed information about the catalytic performance, and underlining advantages and drawbacks of ion-exchange resins for each catalytic process.

References

  1. 1.
    Serrano-Ruiz JC, West RM, Dumesic JA (2010) Catalytic conversion of renewable biomass resources to fuels and chemicals. Annu Rev Chem Biomol Eng 1:79–100.  https://doi.org/10.1146/annurev-chembioeng-073009-100935CrossRefPubMedGoogle Scholar
  2. 2.
    Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513.  https://doi.org/10.1039/c004654jCrossRefGoogle Scholar
  3. 3.
    Polyanskii NG, Sapozhnikov VK (1977) New advances in catalysis by Ion-exchange resins. Russ Chem Rev 46:226–245CrossRefGoogle Scholar
  4. 4.
    Heath HW, Gates BC (1972) Mass transport and reaction in sulfonic acid resin catalyst: the dehydration of t -butyl alcohol. AIChE J 18:321–326CrossRefGoogle Scholar
  5. 5.
    Frija LMT, Afonso CAM (2012) Amberlyst -15: a reusable heterogeneous catalyst for the dehydration of tertiary alcohols. Tetrahedron 68:7414–7421.  https://doi.org/10.1016/j.tet.2012.06.083CrossRefGoogle Scholar
  6. 6.
    Courtney TD, Nikolakis V, Mpourmpakis G, Chen JG, Vlachos DG (2012) Applied catalysis a: general liquid-phase dehydration of propylene glycol using solid-acid catalysts. Applied Catal A Gen 449:59–68.  https://doi.org/10.1016/j.apcata.2012.09.034CrossRefGoogle Scholar
  7. 7.
    Kaneko T, Derbyshire F, Makino E, Gray D, Tamura M (2005) Coal liquefaction. In: ULLMANN’S encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  8. 8.
    Lei Z, Zou Z, Dai C, Li Q, Chen B (2011) Synthesis of dimethyl ether (DME) by catalytic distillation. Chem Eng Sci 66:3195–3203.  https://doi.org/10.1016/j.ces.2011.02.034CrossRefGoogle Scholar
  9. 9.
    Azizi Z, Rezaeimanesh M, Tohidian T, Rahimpour MR (2014) Dimethyl ether: a review of technologies and production challenges. Chem Eng Process Process Intensif 82:150–172.  https://doi.org/10.1016/j.cep.2014.06.007CrossRefGoogle Scholar
  10. 10.
    Hosseininejad S, Afacan A, Hayes RE (2012) Catalytic and kinetic study of methanol dehydration to dimethyl ether. Chem Eng Res Des 90:825–833.  https://doi.org/10.1016/j.cherd.2011.10.007CrossRefGoogle Scholar
  11. 11.
    Casas C, Bringué R, Ramírez E, Iborra M, Tejero J (2011) Liquid-phase dehydration of 1-octanol, 1-hexanol and 1-pentanol to linear symmetrical ethers over ion exchange resins. Appl Catal A Gen 396:129–139.  https://doi.org/10.1016/j.apcata.2011.02.006CrossRefGoogle Scholar
  12. 12.
    Pérez MA, Bringué R, Iborra M, Tejero J, Cunill F (2014) Ion exchange resins as catalysts for the liquid-phase dehydration of 1-butanol to di-n-butyl ether. Appl Catal A Gen 482:38–48.  https://doi.org/10.1016/j.apcata.2014.05.017CrossRefGoogle Scholar
  13. 13.
    Tejero J, Cunill F, Iborra M, Izquierdo JF, Fité C (2002) Dehydration of 1-pentanol to di- n -pentyl ether over ion-exchange resin catalysts. J Mol Catal A Chem 183:541–554CrossRefGoogle Scholar
  14. 14.
    Guilera J, Bringué R, Ramírez E, Fité C, Tejero J (2014) Kinetic study of ethyl octyl ether formation from ethanol and 1-octanol on amberlyst 70. AIChE J 60:2918–2928.  https://doi.org/10.1002/aicCrossRefGoogle Scholar
  15. 15.
    Guilera J, Ramírez E, Fité C, Tejero J, Cunill F (2015) Synthesis of ethyl hexyl ether over acidic ion-exchange resins for cleaner diesel fuel. Catal Sci Technol 5:2238–2250.  https://doi.org/10.1039/C4CY01548GCrossRefGoogle Scholar
  16. 16.
    Tejero J, Cunill F, Iborra M (1987) Molecular mechanisms of MTBE synthesis on a sulphonic acid ion exchange resin. J Mol Catal 42:257–268CrossRefGoogle Scholar
  17. 17.
    Soto R, Fité C, Ramírez E, Iborra M, Tejero J (2018) Catalytic activity dependence on morphological properties of acidic ion-exchange resins for the simultaneous ETBE and TAEE liquid-phase synthesis. React Chem Eng 3:195–205.  https://doi.org/10.1039/C7RE00177KCrossRefGoogle Scholar
  18. 18.
    Bildea CS, Gyorgy R, Sánchez-Ramírez E, Quiroz-Ramírez JJ, Segovia-Hernandez JG, Kiss AA (2015) Optimal design and plantwide control of novel processes for di-n-pentyl ether production. J Chem Technol Biotechnol 90:992–1001.  https://doi.org/10.1002/jctb.4683CrossRefGoogle Scholar
  19. 19.
    Samoilov VO, Ramazanov DN, Nekhaev AI, Egazar SV, Maximov AL (2015) Flow reactor synthesis of cetane-enhancing fuel additive from 1-butanol. Fuel Process Technol 140:312–323.  https://doi.org/10.1016/j.fuproc.2015.08.021CrossRefGoogle Scholar
  20. 20.
    Vanoye L, Zanota M, Desgranges A, Favre-reguillon A, De Bellefon C (2011) Solvent effects in liquid-phase dehydration reaction of ethanol to diethylether catalysed by sulfonic-acid catalyst. Appl Catal A Gen 394:276–280.  https://doi.org/10.1016/j.apcata.2011.01.012CrossRefGoogle Scholar
  21. 21.
    Müller H (2005) Tetrahydrofuran. In: ULLMANN’S encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA,WeinheimGoogle Scholar
  22. 22.
    Vaidya SH, Bhandari VM, Chaudhari RV (2003) Reaction kinetics studies on catalytic dehydration of 1, 4-butanediol using cation exchange resin. Appl Catal A Gen 242:321–328CrossRefGoogle Scholar
  23. 23.
    Shinde VM, Patil GN, Katariya A, Mahajan YS (2015) Chemical engineering and processing: process intensification production of tetrahydrofuran by dehydration of 1, 4-butanediol using amberlyst-15: batch kinetics and batch reactive distillation. Chem Eng Process Process Intensif 95:241–248.  https://doi.org/10.1016/j.cep.2015.06.016CrossRefGoogle Scholar
  24. 24.
    Corma Canos A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502.  https://doi.org/10.1021/cr050989dCrossRefGoogle Scholar
  25. 25.
    Gallezot P (2012) Conversion of biomass to selected chemical products. Chem Soc Rev 41:1538–1558.  https://doi.org/10.1039/c1cs15147aCrossRefPubMedGoogle Scholar
  26. 26.
    Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, Granados ML (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189.  https://doi.org/10.1039/c5ee02666kCrossRefGoogle Scholar
  27. 27.
    Lange JP, Van Der Heide E, Van Buijtenen J, Price R (2012) Furfural-a promising platform for lignocellulosic biofuels. Chem Sus Chem 5:150–166.  https://doi.org/10.1002/cssc.201100648CrossRefGoogle Scholar
  28. 28.
    Wang T, Nolte MW, Shanks BH (2014) Catalytic dehydration of C 6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem 16:548–572.  https://doi.org/10.1039/c3gc41365aCrossRefGoogle Scholar
  29. 29.
    Van Putten R, Van Der Waal JC, De Jong E, Rasrendra CB, Heeres HJ, De Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597CrossRefGoogle Scholar
  30. 30.
    Agirrezabal-Telleria I, Larreategui A, Requies J, Güemez MB, Arias PL, Guemez MB, Arias PL (2011) Furfural production from xylose using sulfonic ion-exchange resins (Amberlyst) and simultaneous stripping with nitrogen. Bioresour Technol 102:7478–7485.  https://doi.org/10.1016/j.biortech.2011.05.015CrossRefPubMedGoogle Scholar
  31. 31.
    Agirrezabal-Telleria I, Requies J, Güemez MB, Arias PL (2012) Furfural production from xylose + glucose feedings and simultaneous. Green Chem 14:3132–3140.  https://doi.org/10.1039/c2gc36092fCrossRefGoogle Scholar
  32. 32.
    Mittal A, Black SK, Vinzant TB, Brien O, Tucker MP, Johnson DK (2017) Production of furfural from process-relevant biomass- derived pentoses in a biphasic reaction system. ACS Sustain Chem Eng 5:5694–5701CrossRefGoogle Scholar
  33. 33.
    Aellig C, Scholz D, Dapsens PY, Mondelli C, Pérez-Ramírez J (2015) When catalyst meets reactor: continuous biphasic processing of xylan to furfural over GaUSY/Amberlyst-36. Catal Sci Technol 5:142–149.  https://doi.org/10.1039/C4CY00973HCrossRefGoogle Scholar
  34. 34.
    Heguaburu V, Franco J, Reina L, Tabarez C, Moyna G, Moyna P (2012) Dehydration of carbohydrates to 2-furaldehydes in ionic liquids by catalysis with ion exchange resins. Catal Commun 27:88–91.  https://doi.org/10.1016/j.catcom.2012.07.002CrossRefGoogle Scholar
  35. 35.
    Mun D, Thanh N, Huynh T, Shin S, Kim YJ, Kim S, Shul Y-G, Cho JK (2017) Facile isomerization of glucose into fructose using anion-exchange resins in organic solvents and application to direct conversion of glucose into furan compounds. Res Chem Intermed 43:5495–5506.  https://doi.org/10.1007/s11164-017-2942-3CrossRefGoogle Scholar
  36. 36.
    Román-leshkov Y, Chheda JN, Dumesic JA (2012) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science (80): 1933–1937.  https://doi.org/10.1126/science.1126337CrossRefGoogle Scholar
  37. 37.
    Lansalot-Matras C, Moreau C (2003) Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catal Commun 4:517–520.  https://doi.org/10.1016/S1566-7367(03)00133-XCrossRefGoogle Scholar
  38. 38.
    Qi X, Watanabe M, Aida TM, Smith RL Jr (2009) Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chem 11:1327–1331.  https://doi.org/10.1039/b905975jCrossRefGoogle Scholar
  39. 39.
    Li Y, Liu H, Song C, Gu X, Li H, Zhu W, Yin S (2013) The dehydration of fructose to 5-hydroxymethylfurfural efficiently catalyzed by acidic ion-exchange resin in ionic liquid. Bioresour Technol 133:347–353.  https://doi.org/10.1016/j.biortech.2013.01.038CrossRefPubMedGoogle Scholar
  40. 40.
    Pérez-Maqueda J, Arenas-Ligioiz I, López Ó, Fernández-Bolaños JG (2014) Eco-friendly preparation of 5-hydroxymethylfurfural from sucrose using ion-exchange resins. Chem Eng Sci 109:244–250.  https://doi.org/10.1016/j.ces.2014.01.037CrossRefGoogle Scholar
  41. 41.
    Ravasco JMJM, Coelho JAS, Simeonov SP, Afonso CAM (2017) Bifunctional Cr3 + modified ion exchange resins as efficient reusable catalysts for the production and isolation of 5- hydroxymethylfurfural from glucose. RSC Adv 7:7555–7559.  https://doi.org/10.1039/C6RA22539JCrossRefGoogle Scholar
  42. 42.
    Liu H, Wang H, Li Y, Yang W, Song C, Li H, Zhu W, Jiang W (2015) Glucose dehydration to 5-hydroxymethylfurfural in ionic liquid over Cr3 + -modified ion exchange resin. RSC Adv 5:9290–9297.  https://doi.org/10.1039/C4RA09131KCrossRefGoogle Scholar
  43. 43.
    Wang P, Ren L, Lu Q, Huang Y (2016) Dehydration of glucose to 5- hydroxymethylfurfural using combined catalysts in ionic liquid by microwave heating. Chem Eng J 203:1507–1514.  https://doi.org/10.1080/00986445.2016.1213724CrossRefGoogle Scholar
  44. 44.
    Werpy T, Petersen G (2004) Top value added chemicals from biomass. U.S. Dep. Energy. 1:76.  https://doi.org/10.2172/926125
  45. 45.
    Vilcocq L, Cabiac A, Especel C, Guillon E, Duprez D (2013) Transformation of sorbitol to biofuels by heterogeneous catalysis: chemical and industrial considerations. Oil Gas Sci Technol Rev d’IFP Energies Nouv. 68: 841–860.  https://doi.org/10.2516/ogst/2012073CrossRefGoogle Scholar
  46. 46.
    Rose M, Palkovits R (2012) Isosorbide as a renewable platform chemical for versatile applications-quo vadis? Chem Sus Chem 5:167–176.  https://doi.org/10.1002/cssc.201100580CrossRefGoogle Scholar
  47. 47.
    Dussenne C, Delaunay T, Wiatz V, Wyart H, Suisse I, Sauthier M (2017) Synthesis of isosorbide: overview of challenging reactions. Green Chem 19:5332–5344.  https://doi.org/10.1039/C7GC01912BCrossRefGoogle Scholar
  48. 48.
    Morita Y, Furusato S, Takagaki A, Hayashi S, Kikuchi R (2014) Intercalation-controlled cyclodehydration of sorbitol in water over layered-niobium-molybdate solid acid. Chem Sus Chem 8565:748–752.  https://doi.org/10.1002/cssc.201300946CrossRefGoogle Scholar
  49. 49.
    Dabbawala AA, Mishra DK, Huber GW, Hwang JS (2015) Role of acid sites and selectivity correlation in solvent free liquid phase dehydration of sorbitol to isosorbide. Appl Catal A Gen 492:252–261.  https://doi.org/10.1016/j.apcata.2014.12.014CrossRefGoogle Scholar
  50. 50.
    Goodwin JC, Hodge JE, Weisleder D (1980) Preparation of bicyclic hexitol anhydrides by using acidic cation-exchange resin in a binary solvent. p 13C-N.m.r. spectroscopy confirms configurational inversion in chloride displacement of methanesulfonate in isomannide and isosorbide derivatives. Carbohydr Res. 79: 133–141.  https://doi.org/10.1016/s0008-6215(00)85138-1CrossRefGoogle Scholar
  51. 51.
    Moore KV, Sanborn AJ (2005) Process for the production of anhydrosugar alcohols. US 6,849,748 B2.Google Scholar
  52. 52.
    Khan NA, Mishra DK, Hwang JS, Kwak YW, Jhung SH (2011) Liquid-phase dehydration of sorbitol under microwave irradiation in the presence of acidic resin catalysts. Res Chem Intermed 37:1231–1238.  https://doi.org/10.1007/s11164-011-0389-5CrossRefGoogle Scholar
  53. 53.
    Polaert I, Felix MC, Fornasero M, Marcotte S, Buvat JC, Estel L (2013) A greener process for isosorbide production: Kinetic study of the catalytic dehydration of pure sorbitol under microwave. Chem Eng J 222:228–239.  https://doi.org/10.1016/j.cej.2013.02.043CrossRefGoogle Scholar
  54. 54.
    Ginés-Molina MJ, Moreno-Tost R, Santamaría-González J, Maireles-Torres P (2017) Dehydration of sorbitol to isosorbide over sulfonic acid resins under solvent-free conditions, Appl. Catal. A Gen. 537: 66–73.  https://doi.org/10.1016/j.apcata.2017.03.006CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • María José Ginés-Molina
    • 1
  • Juan A. Cecilia
    • 1
  • Cristina García-Sancho
    • 1
  • Ramón Moreno-Tost
    • 1
  • Pedro Maireles-Torres
    • 1
    Email author
  1. 1.Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations