Thermodynamic Kinetics and Sorption of Bovine Serum Albumin with Different Clay Materials

  • Özkan Demirbaş
  • Mehmet Harbi Çalımlı
  • Esra Kuyuldar
  • İ. Halil Baydilek
  • Mehmet Salih Nas
  • Fatih ŞenEmail author


In this study, the adsorption of bovine serum albumin with the Turkish Green Clay and its thermodynamic parameters were performed. Experimental studies were done on parameters such as contact time (1–120 min), temperature (298–318 K), pH (5.5–9), and protein concentration (0.025–0.075 g/L), in the applied adsorption process of bovine serum albumin. The adsorption process showed that the intraparticle diffusion mechanism could be said to be more appropriate for the BSA sorption. The maximum adsorption capacity of the green clay mineral was found to be 196.74 mg/g.


Adsorption process Bovine serum albumin Green clay 


  1. 1.
    Abrahamson JT, Sen F, Sempere B, Wal MP (2013) Excess thermopower and the theory of thermopower waves. ACS Nano 7(8):6533–6544PubMedCrossRefGoogle Scholar
  2. 2.
    Ali I (2010) The quest for active carbon adsorbent substitutes: inexpensive adsorbents for toxic metal ions removal from wastewater. Sep Purif Rev 39:95–171CrossRefGoogle Scholar
  3. 3.
    Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091PubMedCrossRefGoogle Scholar
  4. 4.
    Ali I, Asim M, Khan TA (2012) Low-cost adsorbents for the removal of organic pollutants from wastewater. J Environ. Manag 113:170–183CrossRefGoogle Scholar
  5. 5.
    Alkan M, Dogan M, Turhan Y, Demirbas Ö Turan P (2008) Adsorption kinetics and mechanism of maxilon Blue 5G dye on sepiolite from aqueous solutions. Chem Eng J 139:213–223CrossRefGoogle Scholar
  6. 6.
    Auta M, Hameed BH (2011) Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of acid blue 25 dye. Chem Eng J 171:502–509CrossRefGoogle Scholar
  7. 7.
    Auta M, Hameed BH (2012) Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chem Eng J 198–199:219–227CrossRefGoogle Scholar
  8. 8.
    Auta M, Hameed BH (2013) Acid modified local clay beads as useful, a low-cost adsorbent for dynamic adsorption of methylene blue. J Ind Eng Chem 19:1153–1161CrossRefGoogle Scholar
  9. 9.
    Ayranci R, Baskaya G, Guzel M et al (2017) Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: a comparative investigation. Nano-Struct Nano-Objects 11:13–19CrossRefGoogle Scholar
  10. 10.
    Baskaya G, Yıldız Y, Savk A et al (2017) Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens Bioelectron 91:728–733PubMedCrossRefGoogle Scholar
  11. 11.
    Bhattacharya AK, Naiya TK, Mandal SN, Das SK (2008) Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents. J Chem Eng 137:529–541Google Scholar
  12. 12.
    Brandes N, Welzel PB, Werner C, Kroh LW (2006) Adsorption induced Conformational changes of proteins onto ceramic particles: differential scanning calorimetry and FTIR analysis. J Colloid Interface Sci 299:56–69PubMedCrossRefGoogle Scholar
  13. 13.
    Bujdák J, Rode BM (1997) Silica, alumina, and clay-catalyzed alanine peptide bond formation. J Mol Evol 45:457–466CrossRefGoogle Scholar
  14. 14.
    Bujdák J, LeSon H, Rode BM (1996) Montmorillonite catalyzed peptide bond formation: the effect of the exchangeable cation. J Inorg Biochem 63:119–124Google Scholar
  15. 15.
    Causserand C, Jover K, Aimar P, Meireles M (1997) Modification of clay cake permeability by adsorption of protein. J Membr Sci 137:31–44CrossRefGoogle Scholar
  16. 16.
    Chiou MS, Ho PY, Li HY (2004) Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads. Dyes Pigm 60:69–84CrossRefGoogle Scholar
  17. 17.
    Dasdelen Z, Yıldız Y, Eris S et al (2017) Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybrid material for methanol oxidation reaction. Appl Catal B 219C:511–516CrossRefGoogle Scholar
  18. 18.
    Demirbas O (2006) Doktora Tezi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, BalıkesirGoogle Scholar
  19. 19.
    Demirbas O, Nas MS (2016) Adsorption and electrokinetic properties of catalase onto perlite samples. Int Res J Pure Appl Chem 13(2):1–14 CrossRefGoogle Scholar
  20. 20.
    Demirbas O, Nas MS (2016) Kinetics and mechanism of the adsorption of methylene blue from aqueous solution onto Turkish green clay. Arch Curr Res Int 6(3):1–10CrossRefGoogle Scholar
  21. 21.
    Ding X, Henrichs S (2002) Adsorption and desorption of proteins and polyamino acids by clay minerals and marine sediments. Mar Chem 77:225–237CrossRefGoogle Scholar
  22. 22.
    Doğan M, Alkan M, Demirbaş O, Ozdemir Y, Ozmetin C (2006) Adsorption kinetics of Maxilon Blue GRL onto sepiolite from aqueous solutions. Chem Eng J 124:89–101CrossRefGoogle Scholar
  23. 23.
    El-Naggar IM, Zakaria ES, Ali IM, Khalil M, El-Shahat MF (2012) Kinetic modeling analysis for the removal of cesium ions from aqueous solutions using polyaniline titanotungstate. Arabian J Chem 5:109–119CrossRefGoogle Scholar
  24. 24.
    Eris S, Dasdelen Z, Sen F (2018) Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells. J Colloid Interface Sci 513:767–773PubMedCrossRefGoogle Scholar
  25. 25.
    Erkan A, Bakir U, Karakas G (2006) Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J Photochem Photobiol, A 184(3):313–321 CrossRefGoogle Scholar
  26. 26.
    Fusi P, Ristori GG, Calamai L, Stotzky G (1989) Adsorption and binding of protein on “clean” (homoionic) and “dirty” (coated with Fe oxyhydroxides) montmorillonite, illite and kaolinite. Soil Biol Biochem 21:911–920CrossRefGoogle Scholar
  27. 27.
    Giacomelli CE, Bremer MG, Norde WJ (1999) ATR-FTIR study of IgG adsorbed on different silica surfaces. Colloid Interface Sci. 220:13–23CrossRefGoogle Scholar
  28. 28.
    Giraldo JP, Landry MP, Fal SM (2014) A nanobionic approach to augment plant photosynthesis and biochemical sensing using targeted nanoparticles. Nat Mater 13:400–408PubMedCrossRefGoogle Scholar
  29. 29.
    Guibal E, McCarrick P, Tobin JM (2003) Comparison of the sorption of anionic dyes on activated carbon and chitosan derivatives from dilute solutions. Sep Sci Technol 38:3049–3073CrossRefGoogle Scholar
  30. 30.
    Gupta A, Loew GH, Lawless J (1983) Interaction of metal ions and amino acids: possible mechanisms for the adsorption of amino acids on homoionic smectite clays. Inorg Chem 22:111–120CrossRefGoogle Scholar
  31. 31.
    Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451CrossRefGoogle Scholar
  32. 32.
    Ho YS, Porter JF, Mckay G (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollut 141:1–33CrossRefGoogle Scholar
  33. 33.
    Hook F, Rodahl M, Kasemo B, Brzezinski P (1998) Structural changes in hemoglobin during adsorption to solid surfaces: effects of pH, ionic strength, and ligand binding. Proc Natl Acad Sci USA 95:12271–12276PubMedCrossRefGoogle Scholar
  34. 34.
    Hu T, Su Z (2003) A solid phase adsorption method for preparation of bovine serum albumin bovine hemoglobin conjugate. J Biotechnol 100:267–275PubMedCrossRefGoogle Scholar
  35. 35.
    Huang BX, Kim HY (2004) Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. J Am Soc Mass Spectrom 15:1237–1247PubMedCrossRefGoogle Scholar
  36. 36.
    Hunter J (1999) Introduction to modern colloid science. Oxford University Press, New YorkGoogle Scholar
  37. 37.
    Iverson NM, Barone PW, Sen F, Shandell M et al (2013) In vivo biosensing via tissue-localizable near- infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol 8(11):873–880PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Jose M, Harsha N, Suhailath K, Mohamed AP, Shukla S (2016) Hydrogen phosphate anions modified hydrogen titanate nanotubes for methylene blue adsorption from aqueous solution: validating novel method of predicting adsorption capacity. J Environ Chem Eng 4:1295–1307CrossRefGoogle Scholar
  39. 39.
    Kannan K, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons–a comparative study. Dyes Pigm 51:25–40CrossRefGoogle Scholar
  40. 40.
    Koskun Y, Savk A, Sen B, Sen F (2018) Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal Chim Acta 1010:37–43PubMedCrossRefGoogle Scholar
  41. 41.
    Kudelski A (2003) Influence of electrostatically bound proteins on the structure of linkage monolayers: adsorption of bovine serum albumin on silver and gold substrates coated with monolayers of 2-mercaptoethanesulphonate. Vib Spectrosc 33:197–204CrossRefGoogle Scholar
  42. 42.
    Laidler KJ, Meiser JM (1999) Physical chemistry. Houghton Mifflin, New York, NY, p 852Google Scholar
  43. 43.
    Li YH, Zhu Y, Zhao Y, Wu D, Luan Z (2006) Different morphologies of carbon nanotubes effect on the lead removal from aqueous solution. Diamond Relat Mater 15:90–94CrossRefGoogle Scholar
  44. 44.
    Lu CF, Nadarajah A, Chittur KK (1994) A comprehensive model for protein adsorption to surfaces. J Colloid Interface Sci 168:152–161CrossRefGoogle Scholar
  45. 45.
    Mall ID, Srivastava VC, Agarwal NK (2006) Removal of orange-G and methyl violet dyes by adsorption on bagasse fly ash–kinetic study and equilibrium isotherm analyses. Dyes Pigm 69:210–223CrossRefGoogle Scholar
  46. 46.
    Mall ID, Upadhyay SN (1995) Treatment of methyl violet bearing wastewater from paper mill effluent using low-cost adsorbents. J Indian Pulp Paper Technol Assoc 7:51–57Google Scholar
  47. 47.
    Mansch HH, Chapman D (1996) Infrared spectroscopy of biomolecules. Wiley, and Liss, pp 239–278Google Scholar
  48. 48.
    McClellan SJ, Franses EI (2003) Effect of concentration and denaturation on adsorption and surface tension of bovine serum albumin. Colloids Surf B: Biointerfaces 28:63–75CrossRefGoogle Scholar
  49. 49.
    Montero S, Blanco A, Virto M, Ladenta LC, Agud I, Solozabal R, Lascaray JM, Renobales M, Llama MJ, Serra JL (1993) Immobilization of Candida cylindracea lipase on methyl acrylate-divinyl benzene copolymer and its derivatives. Enzyme Microb Technol 15:239–247PubMedCrossRefGoogle Scholar
  50. 50.
    Oliva FY, Avalle LB, Cmara OR, De Pauli CP (2003) Adsorption of human serum albumin (HSA) onto colloidal TiO2 Particles. Part I. J Colloid Interface Sci 261:299–311PubMedCrossRefGoogle Scholar
  51. 51.
    Ozcan A, Oncu EM, Ozcan AS (2006) Kinetics isotherm and thermodynamic studies of adsorption of acid blue 193 from aqueous solutions on natural sepiolite. Colloid Surf A 277:90–97CrossRefGoogle Scholar
  52. 52.
    Ozcan A, Ozcan AS (2005) Adsorption of acid Red 57 from aqueous solutions on surfactant-modified sepiolite. J Hazard Mater 125:252–259PubMedCrossRefGoogle Scholar
  53. 53.
    Pronk W, Kerkhof PJAM, Van Helden C, Van‟t Rıet K (1988) The hydrolysis of triglycerides by immobilized lipase in a hydrophilic membrane reactor. Biotechnol Bioeng 32:512–518PubMedCrossRefGoogle Scholar
  54. 54.
    Quiquampoix H, Staunton S, Baron MH, Ratcliffe RG (1993) Interpretation of the pH dependence of protein adsorption on clay mineral surfaces and its relevance to the understanding of extracellular enzyme activity in soil. Colloids Surf A: Physicochem Eng Aspect 75:85–93CrossRefGoogle Scholar
  55. 55.
    Rehman MSU, Munir M, Ashfaq M, Rashid N, Nazar MF, Danish M, Han JI (2013) Adsorption of brilliant green dye from aqueous solution onto red clay. Chem Eng J 228:54–62CrossRefGoogle Scholar
  56. 56.
    Rigou P, Rezaei H, Grosclaude J, Staunton S, Quiquampoix H (2006) Fate of prions in soil: adsorption and extraction by electroelution of recombinant ovine prion protein from montmorillonite and natural soils. Environ Sci Technol 40:1497–1503PubMedCrossRefGoogle Scholar
  57. 57.
    Sahin B, Aygun A, Gunduz H et al (2018) Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 Cell line. Colloids Surf B 163:119–124CrossRefGoogle Scholar
  58. 58.
    Sariri R, Tighe B (1996) Effect of surface chemistry on protein interaction with hydrogel contact lenses. J Iranian Polym 5:259–266Google Scholar
  59. 59.
    Sen B, Akdere EH, Savk A et al (2018) A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile. Appl Catal B 225(5):148–153CrossRefGoogle Scholar
  60. 60.
    Sharma YC (2001) Effect of temperature on interfacial adsorption of Cr(VI) on Wollastonite. J Colloid Interface Sci 223:265–270CrossRefGoogle Scholar
  61. 61.
    Sternik D, Staszczuk P, Grodzicka G, Pekalska J, Skrzypiec K (2004) Studies of physicochemical properties of the surfaces with the chemically bonded phase of BSA. J Therm Anal Calorim 77:171–182CrossRefGoogle Scholar
  62. 62.
    Tasman W, Ajaeger E (1998) Dane’s clinical ophthalmology. Lippincott, p 4Google Scholar
  63. 63.
    Tekin N, Demirbaş O, Alkan M (2005) Adsorption of cationic polyacrylamide onto kaolinite. Micropor Mesopor Mater 85:340–350CrossRefGoogle Scholar
  64. 64.
    Vecchia RD, Sebrao D, Nascımento MG, Soldı V (2005) Carboxymethylcellulose and poly(vinyl alcohol) used as film support for lipases immobilization. Process Biochem 40:2677–2682CrossRefGoogle Scholar
  65. 65.
    Vermöhlen K, Lewandowski HD, Narres HD, Schwuger MJ (2000) Adsorption of polyelectrolytes onto oxides—the influence of ionic strength, molar mass, and Ca2+ ions. Coll Surf A 163:45–53CrossRefGoogle Scholar
  66. 66.
    Violante A, De Cristofaro A, Rao MA, Gianfreda L (1995) Physicochemical properties of protein-smectite and protein-Al(OH)x-smectite complexes. Clay Miner 30:325–336CrossRefGoogle Scholar
  67. 67.
    Vroman L, Adams AL (1969) Findings with the recording ellipsometer suggesting a rapid exchange of specific plasma proteins at liquid/solid interfaces. Surf Sci 16:438CrossRefGoogle Scholar
  68. 68.
    Williams LB, Haydel SE, Giese RF Jr, Eber DD (2008) Chemical and mineralogical characteristics of French green clays used for healing. Clays Clay Miner 56:437–452PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Xu H, Li M, He B (1995) Enzym Microb Technol 17:194–199CrossRefGoogle Scholar
  70. 70.
    Yildiz Y, Onal Okyay T, Sen B et al (2017) Activated carbon furnished monodisperse Pt nanocomposites as a superior adsorbent for methylene blue removal from aqueous solutions. J Nanosci Nanotechnol 17:4799–4804CrossRefGoogle Scholar
  71. 71.
    Zhang J, Landry MP, Barone PW, Sen F (2013) Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat Nanotechnol 8(12):959–968PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Özkan Demirbaş
    • 1
  • Mehmet Harbi Çalımlı
    • 2
  • Esra Kuyuldar
    • 3
  • İ. Halil Baydilek
    • 4
  • Mehmet Salih Nas
    • 4
  • Fatih Şen
    • 3
    Email author
  1. 1.Department of Chemistry, Faculty of Science and LiteratureUniversity of BalikesirBalikesirTurkey
  2. 2.Tuzluca Vocational High SchoolIgdir UniversityIgdirTurkey
  3. 3.Sen Research Group, Department of Biochemistry, Faculty of Arts and ScienceDumlupınar UniversityKütahyaTurkey
  4. 4.Department of Environmental, Faculty of EngineeringUniversity of IgdirIgdirTurkey

Personalised recommendations