Skip to main content

Acid-Base Disorders and Regional Citrate Anticoagulation with Continuous Renal Replacement Therapy

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2019

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

Abstract

Citrate delivery with continuous renal replacement therapy (CRRT) enables provision of real regional anticoagulation. Several meta-analyses have strongly confirmed that regional citrate anticoagulation (RCA) is more efficient (longer circuit lifespan) and safer (lower bleeding risk) than heparin [1–3]. Besides these beneficial effects, three recent high-quality randomized controlled trials (RCTs) have demonstrated that metabolic complications are now uncommon, transient and easily preventable when RCA is implemented using a formalized strategy [4–6]. Therefore, RCA is now recommended as the first choice for anticoagulation during CRRT [7, 8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang Z, Hongying N. Efficacy and safety of regional citrate anticoagulation in critically ill patients undergoing continuous renal replacement therapy. Intensive Care Med. 2012;38:20–8.

    Article  Google Scholar 

  2. Bai M, Zhou M, He L, et al. Citrate versus heparin anticoagulation for continuous renal replacement therapy: an updated meta-analysis of RCTs. Intensive Care Med. 2015;41:2098–110.

    Article  CAS  Google Scholar 

  3. Liu C, Mao Z, Kang H, Hu J, Zhou F. Regional citrate versus heparin anticoagulation for continuous renal replacement therapy in critically ill patients: a meta-analysis with trial sequential analysis of randomized controlled trials. Crit Care. 2016;20:144.

    Article  Google Scholar 

  4. Gattas DJ, Rajbhadari D, Bradford C, Buhr H, Lo S, Bellomo R. A randomized controlled trial of regional citrate versus regional heparin anticoagulation for continuous renal replacement therapy in critically ill adults. Crit Care Med. 2015;43:1622–9.

    Article  CAS  Google Scholar 

  5. Schilder L, Nurmohamed SA, Bosch FH, et al. Citrate anticoagulation versus systemic heparinisation in continuous venovenous hemofiltration in critically ill patients with acute kidney injury: a multi-center randomized clinical trial. Crit Care. 2014;18:472.

    Article  Google Scholar 

  6. Stucker F, Ponte B, Tataw J, et al. Efficacy and safety of citrate-based anticoagulation compared to heparin with acute kidney injury requiring continuous renal replacement therapy: a randomized controlled trial. Crit Care. 2015;19:91.

    Article  Google Scholar 

  7. The Kidney Disease Improving Global Outcomes (KDIGO) Working Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2012;2(Suppl):1–138.

    Google Scholar 

  8. Vinsonneau C, Allain-Launay E, Blayau C, et al. Renal replacement therapy in adult and pediatric intensive care: recommendations by an expert panel from the French Intensive Care Society (SRLF) with the French Society of Anesthesia Intensive Care (SFAR) French Group for Pediatric Intensive Care Emergencies (GFRUP) the French Dialysis Society (SFD). Ann Intensive Care. 2015;5:58.

    Article  Google Scholar 

  9. Zheng Y, Xu Z, Zhu Q, et al. Citrate pharmacokinetics in critically ill patients with acute kidney injury. PLoS One. 2013;8:e65992.

    Article  CAS  Google Scholar 

  10. Kramer L, Bauer E, Joukhadar C, et al. Citrate pharmacokinetics and metabolism in cirrhotic and non cirrhotic critically ill patients. Crit Care Med. 2003;31:2450–5.

    Article  CAS  Google Scholar 

  11. Oudemans-van Straaten H, Kellum J, Bellomo R. Clinical review: anticoagulation for continuous renal replacement therapy – heparin or citrate? Crit Care. 2011;15:202.

    Article  Google Scholar 

  12. Fiaccadori E, Pistolesi V, Mariano F, et al. Regional citrate anticoagulation for renal replacement therapies in patients with acute kidney injury: a position statement of the work group "renal replacement therapies in critically ill patients" of the Italian society of nephrology. J Nephrol. 2015;28:151–64.

    Article  CAS  Google Scholar 

  13. Quintard H, Hubert S, Ichai C. Qu'apporte le modèle de Stewart à l'interprétation des troubles de l'équilibre acide base? Ann Fr Anesth Réanim. 2007;26:423–33.

    Article  CAS  Google Scholar 

  14. Moviat M, van den Boogaard M, et al. Stewart analysis of apparently normal acid-base state in the critically ill. Crit Care. 2013;28:1048–54.

    Article  Google Scholar 

  15. Dubin A, Menises MM, Masevicius FD, et al. Comparison of three different methods of evaluation of metabolic acid-base disorders. Crit Care Med. 2007;35:1267–70.

    Google Scholar 

  16. Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med. 2000;162:2246–51.

    Article  CAS  Google Scholar 

  17. Stewart PA. Independent and dependent variables of acid-base control. Respir Physiol. 1978;33:9–26.

    Article  CAS  Google Scholar 

  18. Khadzhymov D, Dahlinger A, Schelter C, et al. Hyperlactatemia, lactate kinetics and prediction of citrate accumulation in critically ill patients undergoing continuous renal replacement therapy with regional citrate anticoagulation. Crit Care Med. 2017;45:e941–6.

    Article  Google Scholar 

  19. Meier-Kriesche HU, Gitomer J, Finkel K, DuBose T. Increased total to ionized calcium ratio during continuous venovenous hemodialysis with regional citrate anticoagulation. Crit Care Med. 2001;29:748–52.

    Article  CAS  Google Scholar 

  20. Hetzel GR, Taskaya G, Sucker C, Hennersdorf M, Grabensé B, Schmitz M. Citrate plasma levels in patients under regional anticoagulation in continuous venovenous hemofiltration. Am J Kidney Dis. 2006;48:806–11.

    Article  CAS  Google Scholar 

  21. Schultheiß C, Saugel B, Philip V, et al. Continuous venovenous hemodialysis with regional citrate anticoagulation in patients with liver failure: a prospective observational study. Crit Care. 2012;16:R162.

    Article  Google Scholar 

  22. Schneider AG, Journnois D, Rimmelé T. Complications of regional citrate anticoagulation: accumulation or overload? Crit Care. 2017;21:281.

    Article  Google Scholar 

  23. Morgera S, Schneider M, Slowinski T, et al. A safe citrate anticoagulation protocol with variable treatment efficacy and excellent control of the acid-base status. Crit Care Med. 2009;37:2018–24.

    Article  CAS  Google Scholar 

  24. Morgera S, Haase M, Rückert M, et al. Regional citrate anticoagulation in continuous hemodialysis – acid base and electrolyte balance and increased dose of dialysis. Nephron Clin Pract. 2005;101:c211–9.

    Article  CAS  Google Scholar 

  25. Khadzhynov D, Schelter C, Lieker I, et al. Incidence and outcome of metabolic disarrangements consistent with citrate accumulation in critically ill patients undergoing continuous venovenous hemodialysis with regional citrate anticoagulation. J Crit Care. 2014;29:265–71.

    Article  CAS  Google Scholar 

  26. Gabutti L, Marone C, Colucci G, Duchini F, Schönholzer C. Citrate anticoagulation in continuous venovenous hemodiafiltration: a metabolic change. Intensive Care Med. 2002;28:1419–25.

    Article  Google Scholar 

  27. Naka T, Egi M, Bellomo R, et al. Low-dose citrate continuous venovenous hemofiltration (CVVH) and acid base balance. Int J Artif Organs. 2005;28:222–8.

    Article  CAS  Google Scholar 

  28. Slowinski T, Morgera S, Joannidis M, et al. Safety and efficacy of regional citrate anticoagulation in the presence of liver failure: the liver citrate anticoagulation threshold (L-CAT) observational study. Crit Care. 2015;19:349.

    Article  Google Scholar 

  29. Aman J, Nurmohamed SA, Vervloet MG, Groeneveld ABJ. Metabolic effects of citrate- vs bicarbonate-based substitution fluid in continuous venovenous hemofiltration: a prospective sequential cohort study. J Crit Care. 2010;25:120–7.

    Article  CAS  Google Scholar 

  30. Przybyl H, Evans J, Haley L, Bisek J, Beck E. Training and maintaining: developing a successful and dynamic continuous renal replacement therapy program. AACN Adv Crit Care. 2017;28:41–50.

    Article  Google Scholar 

  31. Bagshaw SM, Darmon M, Ostermann M, et al. Current state of the art for renal replacement therapy in critically ill patients with acute kidney injury. Intensive Care Med. 2017;43:841–54.

    Article  Google Scholar 

  32. Meersch M, Zarbock A. Renal replacement therapy in critically ill patients: who, when, why and how? Curr Opin Anesthesiol. 2018;31:151–7.

    Google Scholar 

  33. Calatzis A, Toepfer M, Schramm W, Spannagi M, Schiffl H. Citrate anticoagulation for extracorporeal circuits: effects on whole blood coagulation activation and clot formation. Nephron. 2001;89:233–6.

    Article  CAS  Google Scholar 

  34. James MFM, Roche AM. Dose-response relationship between plasma ionized calcium concentration and thromboelastography. J Cardiothorac Vasc Anesth. 2004;18:581–6.

    Article  CAS  Google Scholar 

  35. D’orazio P, Visnick H, Balasubramanian S. Accuracy of commercial blood gas analyzers for monitoring ionized calcium at low concentrations. Clin Chim Acta. 2015;461:34–40.

    Article  Google Scholar 

  36. Schwarzer P, Kuhn SO, Stracke S, et al. Discrepant post filter ionized calcium concentrations by common blood gas analyzers in CRRT using regional citrate anticoagulation. Crit Care. 2015;19:321.

    Article  Google Scholar 

  37. Tolwani AJK, Campbell RC, Schenk MB, Allon M, Warnock DG. Simplified citrate anticoagulation for continuous renal replacement therapy. Kidney Int. 2001;60:370–4.

    Article  CAS  Google Scholar 

  38. Durao MS, Monte JC, Batista MC, et al. The use of regional citrate anticoagulation for continuous venovenous hemodiafiltration in acute kidney injury. Crit Care Med. 2008;36:3024–9.

    Article  CAS  Google Scholar 

  39. Yu Y, Peng S, Cen Z, et al. Applying regional citrate anticoagulation in continuous renal replacement therapy for acute kidney injury patients with acute liver dysfunction: a retrospective observational study. Kidney Blood Press Res. 2018;43:1065–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ichai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ichai, C., Quintard, H., Velly, L. (2019). Acid-Base Disorders and Regional Citrate Anticoagulation with Continuous Renal Replacement Therapy. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2019. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-06067-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06067-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06066-4

  • Online ISBN: 978-3-030-06067-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics