ENACT: Development, Operation, and Quality Assurance of Trustworthy Smart IoT Systems

  • Nicolas FerryEmail author
  • Arnor Solberg
  • Hui Song
  • Stéphane Lavirotte
  • Jean-Yves Tigli
  • Thierry Winter
  • Victor Muntés-Mulero
  • Andreas Metzger
  • Erkuden Rios Velasco
  • Amaia Castelruiz Aguirre
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11350)


To unleash the full potential of IoT and flourishing innovations in application domains such as eHealth or smart city, it is critical to facilitate the creation and operation of trustworthy Smart IoT Systems (SIS). Since SIS typically operate in a changing and often unpredictable environment, the ability of these systems to continuously evolve and adapt to their new environment is decisive to ensure and increase their trustworthiness, quality and user experience. The DevOps movement advocates a set of software engineering best practices and tools, to ensure Quality of Service whilst continuously evolving complex systems. However, there is no complete DevOps support for trustworthy SIS today. In this paper we present a research roadmap to enable DevOps in such systems and introduce the ENACT DevOps concepts and Framework.


Internet of Things DevOps Trustworthiness 


  1. 1.
    IEC: IoT 2020: Smart and secure IoT platform. IEC white paper (2016)Google Scholar
  2. 2.
    NESSI: Cyber physical systems: Opportunities and challenges for software, services, cloud and data. NESSI white paper (2015)Google Scholar
  3. 3.
    NESSI: SOFTWARE CONTINUUM: Recommendations for ICT Work Programme 2018+. NESSI report (2016)Google Scholar
  4. 4.
    Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation. Addison-Wesley Professional, Boston (2010)Google Scholar
  5. 5.
    Taivalsaari, A., Mikkonen, T.: A roadmap to the programmable world: software challenges in the IoT era. IEEE Softw. 34(1), 72–80 (2017)CrossRefGoogle Scholar
  6. 6.
    Morin, B., Fleurey, F., Husa, K.E., Barais, O.: A generative middleware for heterogeneous and distributed services. In: 19th International ACM SIGSOFT Symposium on Component-Based Software Engineering (CBSE), pp. 107–116. IEEE (2016)Google Scholar
  7. 7.
    Ferry, N., Song, H., Rossini, A., Chauvel, F., Solberg, A.: CloudMF: applying MDE to tame the complexity of managing multi-cloud applications. In: IEEE/ACM 7th International Conference on Utility and Cloud Computing (UCC), pp. 269–277. IEEE (2014)Google Scholar
  8. 8.
    Van Ommering, R., Van Der Linden, F., Kramer, J., Magee, J.: The koala component model for consumer electronics software. Computer 33(3), 78–85 (2000)CrossRefGoogle Scholar
  9. 9.
    Fassino, J.P., Stefani, J.B., Lawall, J.L., Muller, G.: Think: a software framework for component-based operating system kernels. In: USENIX Annual Technical Conference, General Track, pp. 73–86 (2002)Google Scholar
  10. 10.
    Fouquet, F., Morin, B., Fleurey, F., Barais, O., Plouzeau, N., Jezequel, J.M.: A dynamic component model for cyber physical systems. In: Proceedings of the 15th ACM SIGSOFT Symposium on Component Based Software Engineering, pp. 135–144. ACM (2012)Google Scholar
  11. 11.
    De Lemos, R., et al.: Software engineering for self-adaptive systems: a second research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013). Scholar
  12. 12.
    Esfahani, N., Kouroshfar, E., Malek, S.: Taming uncertainty in self-adaptive software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering, pp. 234–244. ACM (2011)Google Scholar
  13. 13.
    Fredericks, E.M., DeVries, B., Cheng, B.H.: AutoRELAX: automatically RELAXing a goal model to address uncertainty. Empirical Softw. Eng. 19(5), 1466–1501 (2014)CrossRefGoogle Scholar
  14. 14.
    Esfahani, N., Elkhodary, A., Malek, S.: A learning-based framework for engineering feature-oriented self-adaptive software systems. IEEE Trans. Softw. Eng. 39(11), 1467–1493 (2013)CrossRefGoogle Scholar
  15. 15.
    Sharifloo, A.M., Metzger, A., Quinton, C., Baresi, L., Pohl, K.: Learning and evolution in dynamic software product lines. In: Proceedings of the 11th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp. 158–164. ACM (2016)Google Scholar
  16. 16.
    Metzger, A., Di Nitto, E.: Addressing highly dynamic changes in service-oriented systems: towards agile evolution and adaptation. In: Software Design and Development: Concepts, Methodologies, Tools, and Applications, p. 164 (2013)Google Scholar
  17. 17.
    Aggarwal, C.C.: Managing and Mining Sensor Data. Springer, New York (2013). Scholar
  18. 18.
    Dastjerdi, A.V., Gupta, H., Calheiros, R.N., Ghosh, S.K., Buyya, R.: Fog computing: principles, architectures, and applications. arXiv preprint arXiv:1601.02752 (2016)
  19. 19.
    Niggemann, O., Biswas, G., Kinnebrew, J.S., Khorasgani, H., Volgmann, S., Bunte, A.: Data-driven monitoring of cyber-physical systems leveraging on big data and the internet-of-things for diagnosis and control. In: DX@ Safeprocess, pp. 185–192 (2015)Google Scholar
  20. 20.
    Zasadziński, M., Muntés-Mulero, V., Solé, M., Carrera, D.: Fast root cause analysis on distributed systems by composing precompiled Bayesian networks. In: Proceedings of World Congress on Engineering and Computer Science, vol. 1, pp. 464–469 (2016)Google Scholar
  21. 21.
    OWASP: Internet of Things Top Ten. Technical report (2014)Google Scholar
  22. 22.
    Kolias, C., Stavrou, A., Voas, J., Bojanova, I., Kuhn, R.: Learning internet-of-things security “hands-on”. IEEE Secur. Priv. 14(1), 37–46 (2016)CrossRefGoogle Scholar
  23. 23.
    Cvitić, I., Vujić, M., Husnjak, S.: Classification of security risks in the IoT environment. In: 26th International DAAAM Symposium on Intelligent Manufacturing and Automation, pp. 731–740 (2016)Google Scholar
  24. 24.
    Kecskemeti, G., Casale, G., Jha, D.N., Lyon, J., Ranjan, R.: Modelling and simulation challenges in internet of things. IEEE Cloud Comput. 4(1), 62–69 (2017)CrossRefGoogle Scholar
  25. 25.
    D’Angelo, G., Ferretti, S., Ghini, V.: Simulation of the internet of things. In: 2016 International Conference on High Performance Computing & Simulation (HPCS), pp. 1–8. IEEE (2016)Google Scholar
  26. 26.
    D’Angelo, G., Ferretti, S., Ghini, V.: Multi-level simulation of internet of things on smart territories. Simul. Model. Pract. Theory 73, 3–21 (2017)CrossRefGoogle Scholar
  27. 27.
    Allier, S., et al.: Multitier diversification in web-based software applications. IEEE Softw. 32(1), 83–90 (2015)CrossRefGoogle Scholar
  28. 28.
    Verdult, R., Garcia, F.D., Ege, B.: Dismantling megamos crypto: wirelessly lockpicking a vehicle immobilizer. In: USENIX Security Symposium, pp. 703–718 (2013)Google Scholar
  29. 29.
    Baudry, B., Monperrus, M., Mony, C., Chauvel, F., Fleurey, F., Clarke, S.: DIVERSIFY: ecology-inspired software evolution for diversity emergence. In: Proceedings of the International Conference on Software Maintenance and Reengineering (CSMR), Belgium, pp. 444–447 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicolas Ferry
    • 1
    Email author
  • Arnor Solberg
    • 1
  • Hui Song
    • 1
  • Stéphane Lavirotte
    • 2
  • Jean-Yves Tigli
    • 2
  • Thierry Winter
    • 3
  • Victor Muntés-Mulero
    • 4
  • Andreas Metzger
    • 5
  • Erkuden Rios Velasco
    • 6
  • Amaia Castelruiz Aguirre
    • 6
  1. 1.SINTEF DigitalOsloNorway
  2. 2.Université Côte d’Azur, CNRS, I3SSophia AntipolisFrance
  3. 3.EVIDIANLes Clayes-sous-BoisFrance
  4. 4.BeawreBarcelonaSpain
  5. 5.paluno (The Ruhr Institute for Software Technology), University of Duisburg-EssenEssenGermany
  6. 6.Fundación Tecnalia Research & InnovationDerioSpain

Personalised recommendations