Advertisement

Sentinel-1 for Object-Based Delineation of Built-Up Land Within Urban Areas

  • Arthur Lehner
  • Vahid Naeimi
  • Klaus Steinnocher
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 936)

Abstract

This work deals with the delineation of built-up land within urban areas from Sentinel-1 data using object-based image analysis. The produced layers allow differentiation between built-up and non-built-up area. Additionally a layer is produced, presenting different types of built-up densities. The results are visually compared with a standardized product of the Copernicus earth observation program, the Copernicus High Resolution Layer Imperviousness Degree. For evaluation of the accuracy, the European Settlement Map 2016 was chosen as a reference data set. Results from the built-up density analysis are visually compared with reference layer generated from open government data. The results reveal the suitability of Sentinel-1 data for the delineation of built-up land within urban areas. The quality of the produced layers (built-up land map and built-up density map) is comparable to standardized products that are based on data from optical sensors e.g. Copernicus High Resolution Layer Imperviousness Degree, European Settlement Map 2016 or high resolution building density maps respectively. The accuracy of the built-up land map (BULM) is equal (78.2%) to the one of the settlement layer produced by use of the ISODATA cluster algorithm [1].

Keywords

Remote Sensing Sentinel-1 OBIA Built-up Copernicus 

References

  1. 1.
    Lehner, A., Naeimi, V., Steinnocher, K.: Sentinel-1 for urban areas - comparison between automatically derived settlement layers from sentinel-1 data and copernicus high resolution information layers. In: Ragia, L., Rocha, J.G., Laurini, R. (eds.) 2017 3rd International Conference on Geographical Information Systems Theory, Applications and Management, pp. 43–49. SCITEPRESS - Science and Technology Publications, Setubal (2017)Google Scholar
  2. 2.
    EEA: Corine Land Cover, p. 163. European Environment Agency (2000)Google Scholar
  3. 3.
    Ben-Asher, Z.: HELM-harmonised European land monitoring: findings and recommendations of the HELM project. Tel-Aviv, Israel (2013)Google Scholar
  4. 4.
    Sannier, C., Gallego, J., Dahmer, J., Smith, G., Dufourmont, H., Pennec, A.: Validation of Copernicus high resolution layer on imperviousness degree for 2006, 2009 and 2012. In: 12th International Symposium of Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Montpellier, France, 12th edn, pp. 5–8 (2016)Google Scholar
  5. 5.
    Ciobotaru, N., et al.: Mapping romanian wetlands – a geographical approach, p. 14, Tulcea, Romania (2016)Google Scholar
  6. 6.
    Lefebvre, A., Picand, P.-A., Sannier, C.: Mapping tree cover in European cities: comparison of classification algorithms for an operational production framework. In: 2015 Joint Urban Remote Sensing Event, pp. 1–4. IEEE (2015)Google Scholar
  7. 7.
    Mücher, C.A., Hennekens, S.M., Schaminee, J.H.J., Halada, L., Halabuk, A.: Modelling the spatial distribution of EUNIS forest habitats based on vegetation relevés and Copernicus HRL. European Topic Centre Biological Diversity (2015)Google Scholar
  8. 8.
    Hennig, E.I., Schwick, C., Soukup, T., Orlitová, E., Kienast, F., Jaeger, J.A.: Multi-scale analysis of urban sprawl in Europe: towards a European de-sprawling strategy. Land Use Policy 49, 483–498 (2015)CrossRefGoogle Scholar
  9. 9.
    Steinnocher, K., Köstl, M., Weichselbaum, J.: Grid-based population and land take trend indicators – new approaches introduced by the geoland2 core information service for spatial planning. In: NTTS Conference, Brussels (2011)Google Scholar
  10. 10.
    European Commission: ESM 2016 European Settlement Map (2016)Google Scholar
  11. 11.
    Florczyk, A.J.: A new European settlement map from optical remotely sensed data. IEEE J. Sele. Top. Appl. Earth Obs. Remote Sens. 9(5), 1978–1992 (2016)CrossRefGoogle Scholar
  12. 12.
    D’Aria, D., Piantanida, R., Valentino, A., Riva, D.: Freesar, an innovative SAR data processing framework. In: 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1214–1216. IEEE (2016)Google Scholar
  13. 13.
    Attema, E., et al.: Sentinel-1-the radar mission for GMES operational land and sea services. ESA Bull. 131, 10–17 (2007)Google Scholar
  14. 14.
    European Space Agency: Sentinel-1 User Handbook. ESA (2013)Google Scholar
  15. 15.
    Naeimi, V., Elefante, S., Cao, S., Wagner, W., Dostalova, A., Bauer-Marschallinger, B.: Geophysical parameters retrieval from sentinel-1 SAR data: a case study for high performance computing at EODC. In: 24th High Performance Computing Symposium, p. 10. Society for Computer Simulation International (2016)Google Scholar
  16. 16.
    Bauer-Marschallinger, B., Sabel, D., Wagner, W.: Optimisation of global grids for high-resolution remote sensing data. Comput. Geosci. 72, 84–93 (2014)CrossRefGoogle Scholar
  17. 17.
    Langanke, T.: GIO land (GMES/copernicus initial operations land) high resolution layers (HRLs) – summary of product specifications (2013)Google Scholar
  18. 18.
    MA 18 - Stadtentwicklung und Stadtplanung: Geo data city 14.1. BIS 25.3.2011. Geoinformation und Stadtentwicklung in Wien, Vienna (2011)Google Scholar
  19. 19.
    Madner, V., et al.: Potenziale im Raumordnungs- und Baurecht für energetisch nachhaltige Stadtstrukturen – ProBateS. Schriftenreihe 36, p. 142. BMVIT (2016)Google Scholar
  20. 20.
    Blaschke, T.: Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65(1), 2–16 (2010)CrossRefGoogle Scholar
  21. 21.
    Blaschke, T., et al.: Geographic object-based image analysis–towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 87, 180–191 (2014)CrossRefGoogle Scholar
  22. 22.
    Trimble Documentation: Trimble eCognition® developer version 9.2.1 reference book. Trimble Germany GmbH, Munich (2016)Google Scholar
  23. 23.
    Baatz, M., Schäpe, A.: Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation. In: XII Angewandte Geographische Informationsverarbeitung, pp. 12–23. Wichmann-Verlag, Heidelberg (2000)Google Scholar
  24. 24.
    Zhou, H., Wu, J., Zhang, J.: Digital Image Processing: Part II. Bookboon, London (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Arthur Lehner
    • 1
    • 2
  • Vahid Naeimi
    • 3
  • Klaus Steinnocher
    • 1
  1. 1.Center for EnergyAIT – Austrian Institute of TechnologyViennaAustria
  2. 2.Department of Geoinformatics - Z_GISUniversity of SalzburgSalzburgAustria
  3. 3.Department of Geodesy and Geoinformation, Research Group Remote Sensing E120.1Vienna University of TechnologyViennaAustria

Personalised recommendations