Advertisement

Automatic Program Rewriting in Non-Ground Answer Set Programs

  • Nicholas HippenEmail author
  • Yuliya Lierler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11372)

Abstract

Answer set programming is a popular constraint programming paradigm that has seen wide use across various industry applications. However, logic programs under answer set semantics often require careful design and nontrivial expertise from a programmer to obtain satisfactory solving times. In order to reduce this burden on a software engineer we propose an automated rewriting technique for non-ground logic programs that we implement in a system projector. We conduct rigorous experimental analysis, which shows that applying system projector to a logic program can improve its performance, even after significant human-performed optimizations.

References

  1. 1.
    Balduccini, M., Gelfond, M., Nogueira, M.: Answer set based design of knowledge systems. Ann. Math. Artif. Intell. 47(1–2), 183–219 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bichler, M.: Optimizing non-ground answer set programs via rule decomposition. Bachelor thesis. TU Wien (2015)Google Scholar
  3. 3.
    Bichler, M., Morak, M., Woltran, S.: lpopt: a rule optimization tool for answer set programming. In: Proceedings of International Symposium on Logic-Based Program Synthesis and Transformation (2016)Google Scholar
  4. 4.
    Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance. Commun. ACM 54(12), 92–103 (2011)CrossRefGoogle Scholar
  5. 5.
    Buddenhagen, M., Lierler, Y.: Performance tuning in answer set programming. In: Proceedings of the Thirteenth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR) (2015)Google Scholar
  6. 6.
    Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP: theory and implementation. In: Proceedings of International Conference on Logic Programming (ICLP), pp. 407–424 (2008)Google Scholar
  7. 7.
    Calimeri, F., Fusca, D., Perri, S., Zangari, J.: I-DLV: the new intelligent grounder of DLV. Intelligenza Artificiale 11(1), 5–20 (2017)CrossRefGoogle Scholar
  8. 8.
    Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: Optimizing answer set computation via heuristic-based decomposition. In: Calimeri, F., Hamlen, K., Leone, N. (eds.) PADL 2018. LNCS, vol. 10702, pp. 135–151. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73305-0_9CrossRefGoogle Scholar
  9. 9.
    Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth answer set programming competition. Artif. Intell. 231, 151–181 (2016).  https://doi.org/10.1016/j.artint.2015.09.008. http://www.sciencedirect.com/science/article/pii/S0004370215001447MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-ground answer-set programming. In: Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR) (2006)Google Scholar
  11. 11.
    Eiter, T., Traxler, P., Woltran, S.: An implementation for recognizing rule replacements in non-ground answer-set programs. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 477–480. Springer, Heidelberg (2006).  https://doi.org/10.1007/11853886_41CrossRefGoogle Scholar
  12. 12.
    Faber, W., Leone, N., Mateis, C., Pfeifer, G.: Using database optimization techniques for nonmonotonic reasoning, pp. 135–139 (1999)Google Scholar
  13. 13.
    Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s guide to gringo, clasp, clingo, and iclingo (2010). http://potassco.sourceforge.net
  14. 14.
    Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Challenges in answer set solving. In: Balduccini, M., Son, T.C. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning. LNCS (LNAI), vol. 6565, pp. 74–90. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20832-4_6CrossRefGoogle Scholar
  15. 15.
    Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Advanced preprocessing for answer set solving. In: Proceedings of the 2008 Conference on ECAI 2008: 18th European Conference on Artificial Intelligence, pp. 15–19. IOS Press, Amsterdam (2008). http://dl.acm.org/citation.cfm?id=1567281.1567290
  16. 16.
    Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from theory to practice. Artif. Intell. 187, 52–89 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gebser, M., Schaub, T., Thiele, S.: GrinGo: a new grounder for answer set programming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 266–271. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72200-7_24CrossRefGoogle Scholar
  18. 18.
    Lierler, Y.: SAT-based Answer Set Programming. Ph.D. thesis, University of Texas at Austin (2010)Google Scholar
  19. 19.
    Lierler, Y., Maratea, M., Ricca, F.: Systems, engineering environments, and competitions. AI Mag. 37(3), 45–52 (2016)CrossRefGoogle Scholar
  20. 20.
    Lierler, Y., Schüller, P.: Parsing combinatory categorial grammar via planning in answer set programming. In: Erdem, E., Lee, J., Lierler, Y., Pearce, D. (eds.) Correct Reasoning. LNCS, vol. 7265, pp. 436–453. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30743-0_30CrossRefGoogle Scholar
  21. 21.
    Ricca, F., et al.: Team-building with answer set programming in the Gioia-Tauro seaport. Theory Pract. Logic Program. 12(3), 361–381 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of Nebraska OmahaOmahaUSA

Personalised recommendations