Advertisement

Strategies for Iteratively Refining Layered Graph Models

  • Martin RiedlerEmail author
  • Mario Ruthmair
  • Günther R. Raidl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11299)

Abstract

We consider a framework for obtaining a sequence of converging primal and dual bounds based on mixed integer linear programming formulations on layered graphs. The proposed iterative algorithm avoids the typically rather large size of the full layered graph by approximating it incrementally. We focus in particular on this refinement step that extends the graph in each iteration. Novel path-based approaches are compared to existing variants from the literature. Experiments on two benchmark problems—the traveling salesman problem with time windows and the rooted distance-constrained minimum spanning tree problem—show the effectiveness of our new strategies. Moreover, we investigate the impact of a strong heuristic component within the algorithm, both for improving convergence speed and for improving the potential of an employed reduced cost fixing step.

Keywords

Iterative refinement Layered graphs Integer programming Traveling salesman problem with time windows 

References

  1. 1.
    Ascheuer, N., Fischetti, M., Grötschel, M.: Solving the asymmetric travelling salesman problem with time windows by branch-and-cut. Math. Program. Ser. B 90(3), 475–506 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Baldacci, R., Mingozzi, A., Roberti, R.: New state-space relaxations for solving the traveling salesman problem with time windows. INFORMS J. Comput. 24(3), 356–371 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Boland, N., Hewitt, M., Marshall, L., Savelsbergh, M.: The continuous-time service network design problem. Oper. Res. 65(5), 1303–1321 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Boland, N., Hewitt, M., Vu, D.M., Savelsbergh, M.: Solving the traveling salesman problem with time windows through dynamically generated time-expanded networks. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 254–262. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59776-8_21CrossRefGoogle Scholar
  5. 5.
    Clautiaux, F., Hanafi, S., Macedo, R., Voge, M.É., Alves, C.: Iterative aggregation and disaggregation algorithm for pseudo-polynomial network flow models with side constraints. Eur. J. Oper. Res. 258(2), 467–477 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dash, S., Günlük, O., Lodi, A., Tramontani, A.: A time bucket formulation for the traveling salesman problem with time windows. INFORMS J. Comput. 24(1), 132–147 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dumas, Y., Desrosiers, J., Gelinas, E., Solomon, M.M.: An optimal algorithm for the traveling salesman problem with time windows. Oper. Res. 43(2), 367–371 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gouveia, L., Leitner, M., Ruthmair, M.: Layered graph approaches for combinatorial optimization problems. Comput. Oper. Res. 102, 22–38 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Gouveia, L., Paias, A., Sharma, D.: Modeling and solving the rooted distance-constrained minimum spanning tree problem. Comput. Oper. Res. 35(2), 600–613 (2008). Part Special Issue: Location Modeling Dedicated to the memory of Charles S. ReVelleMathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Leitner, M., Ruthmair, M., Raidl, G.R.: Stabilizing branch-and-price for constrained tree problems. Networks 61(2), 150–170 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Macedo, R., Alves, C., de Carvalho, J.M.V., Clautiaux, F., Hanafi, S.: Solving the vehicle routing problem with time windows and multiple routes exactly using a pseudo-polynomial model. Eur. J. Oper. Res. 214(3), 536–545 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Picard, J.C., Queyranne, M.: The time-dependent traveling salesman problem and its application to the tardiness problem in one-machine scheduling. Oper. Res. 26(1), 86–110 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Riedler, M., Jatschka, T., Maschler, J., Raidl, G.R.: An iterative time-bucket refinement algorithm for a high-resolution resource-constrained project scheduling problem. Int. Trans. Oper. Res. (2017).  https://doi.org/10.1111/itor.12445
  14. 14.
    Ruthmair, M.: On solving constrained tree problems and an adaptive layers framework. Ph.D. thesis, TU Wien, Vienna (2012)Google Scholar
  15. 15.
    Ruthmair, M., Raidl, G.R.: A layered graph model and an adaptive layers framework to solve delay-constrained minimum tree problems. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 376–388. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20807-2_30zbMATHCrossRefGoogle Scholar
  16. 16.
    Wang, X., Regan, A.C.: Local truckload pickup and delivery with hard time window constraints. Transp. Res. B 36(2), 97–112 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Martin Riedler
    • 1
    Email author
  • Mario Ruthmair
    • 2
  • Günther R. Raidl
    • 1
  1. 1.Institute of Logic and ComputationTU WienViennaAustria
  2. 2.Department of Statistics and Operations ResearchUniversity of ViennaViennaAustria

Personalised recommendations