An Efficient Heuristic to the Traveling Salesperson Problem with Hotel Selection

  • Marques Moreira Sousa
  • Luiz Satoru Ochi
  • Simone de Lima Martins
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11299)


Traveling salesperson problem with hotel selection consists of determining a tour for the salesperson who needs to visit a predefined number of customers at different locations by taking into consideration that each working day is limited by time. If the time limit is accomplished, the salesperson must select a hotel from the set of available ones to spend the night. The aim is to minimize the number of necessary days to visit all customers spending the shortest possible travel time. We present an adaptive efficient heuristic based on the Iterated Local Search metaheuristic to solve available instances. The proposed heuristic is able to find good solutions for almost all instances and, in some cases, it is able to improve the quality of the best results found in literature, decreasing the number of trips necessary or time to travel along a tour. Moreover, the heuristic is fast enough to be applied to real problems that require fast responses.


Optimization Metaheuristic Iterated Local Search Traveling Salesperson Problem with Hotel Selection 



This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The authors gratefully acknowledge the financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Federal Institute of São Paulo Campus Campos do Jordão (IFSP) and Computational Intelligence laboratory at Fluminense Federal University (LABIC) for supporting the development of this work.


  1. 1.
    Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  2. 2.
    Baltz, A., Ouali, M.E., Jäger, G., Sauerland, V., Srivastav, A.: Exact and heuristic algorithms for the travelling salesman problem with multiple time windows and hotel selection. J. Oper. Res. Soc. 66, 615–626 (2014)CrossRefGoogle Scholar
  3. 3.
    Berretta, R., Cotta, C., Moscato, P.: Memetic Algorithm. Wiley, Hoboken (2011)Google Scholar
  4. 4.
    Castro, M., Sorensen, K., Goos, P., Vansteenwegen, P.: The multiple travelling salesperson problem with hotel selection. Technical report, University of Antwerp, Faculty of Applied Economics, BE (2014)Google Scholar
  5. 5.
    Castro, M., Sörensen, K., Vansteenwegen, P., Goos, P.: A simple GRASP+VND for the travelling salesperson problem with hotel selection. Technical report, University of Antwerp, Faculty of Applied Economics, BE (2012)Google Scholar
  6. 6.
    Castro, M., Sörensen, K., Vansteenwegen, P., Goos, P.: A fast metaheuristic for the travelling salesperson problem with hotel selection. 4OR, pp. 1–20 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Castro, M., Sörensen, K., Vansteenwegen, P., Goos, P.: A memetic algorithm for the travelling salesperson problem with hotel selection. Comput. Oper. Res. 40(7), 1716–1728 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Coelho, V.N., Grasas, A., Ramalhinho, H., Coelho, I.M., Souza, M.J.F., Cruz, R.C.: An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints. Eur. J. Oper. Res. 250(2), 367–376 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6), 791–812 (1958)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische mathematik 1(1), 269–271 (1959)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Divsalar, A., Vansteenwegen, P., Cattrysse, D.: A variable neighborhood search method for the orienteering problem with hotel selection. Int. J. Prod. Econ. 145(1), 150–160 (2013)CrossRefGoogle Scholar
  12. 12.
    Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130(3), 449–467 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hansen, P., Mladenović, N., Brimberg, J., Pérez, J.A.M.: Handbook of Metaheuristics: Variable Neighbourhood Search. Springer, Heidelberg (2010)Google Scholar
  14. 14.
    Kim, B.I., Kim, S., Sahoo, S.: Waste collection vehicle routing problem with time windows. Comput. Oper. Res. 33(12), 3624–3642 (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Laporte, G., Gendreau, M., Potvin, J.Y.: Semet: classical and modern heuristics for the vehicle routing problem. Int. Trans. Oper. Res. 7(4–5), 285–300 (2000)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21(2), 498–516 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. ISOR, vol. 146, pp. 363–397. Springer, Boston (2010). Scholar
  18. 18.
    Markov, I., Varone, S., Bierlaire, M.: Integrating a heterogeneous fixed fleet and a flexible assignment of destination depots in the waste collection VRP with intermediate facilities. Transp. Res. Part B: Methodol. 84, 256–273 (2016)CrossRefGoogle Scholar
  19. 19.
    Martins, I.C., Pinheiro, R.G., Protti, F., Ochi, L.S.: A hybrid iterated local search and variable neighborhood descent heuristic applied to the cell formation problem. Expert Syst. Appl. 42(22), 8947–8955 (2015)CrossRefGoogle Scholar
  20. 20.
    Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)zbMATHCrossRefGoogle Scholar
  21. 21.
    Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Or, I.: Traveling salesman-type combinatorial problems and their relation to the logistics of regional blood banking. Ph.D. thesis, Northwestern University, Evanston, Illinois (1976)Google Scholar
  23. 23.
    Penna, P.H.V., Subramanian, A., Ochi, L.S.: An iterated local search heuristic for the heterogeneous fleet vehicle routing problem. J. Heuristics 19(2), 201–232 (2013)CrossRefGoogle Scholar
  24. 24.
    Polacek, M., Doerner, K.F., Hartl, R.F., Maniezzo, V.: A variable neighborhood search for the capacitated arc routing problem with intermediate facilities. J. Heuristics 14(5), 405–423 (2008)zbMATHCrossRefGoogle Scholar
  25. 25.
    Sousa, M.M., Gonçalves, L.B.: Comparação de abordagens heurísticas baseadas em algoritmo memético para o problema do caixeiro viajante com seleção de hotéis. In: Proc. XLVI Simpósio Brasileiro de Pesquisa Operacional, pp. 1543–1554. Salvador, Brasil (2014)Google Scholar
  26. 26.
    Subramanian, A., Battarra, M.: An iterated local search algorithm for the travelling salesman problem with pickups and deliveries. J. Oper. Res. Soc. 64(3), 402–409 (2013)CrossRefGoogle Scholar
  27. 27.
    Tarantilis, C.D., Zachariadis, E.E., Kiranoudis, C.T.: A hybrid guided local search for the vehicle-routing problem with intermediate replenishment facilities. INFORMS J. Comput. 20(1), 154–168 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Vansteenwegen, P., Souffriau, W., Sorensen, K.: The travelling salesperson problem with hotel selection. J. Oper. Res. Soc. 63(2), 207–217 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Marques Moreira Sousa
    • 1
    • 2
  • Luiz Satoru Ochi
    • 2
  • Simone de Lima Martins
    • 2
  1. 1.Federal Institute of São PauloCampos do Jordão-SPBrazil
  2. 2.Computing InstituteFluminense Federal UniversityNiterói-RJBrazil

Personalised recommendations