Adaptation of Late Acceptance Hill Climbing Algorithm for Optimizing the Office-Space Allocation Problem

  • Asaju La’aro BolajiEmail author
  • Ikechi Michael
  • Peter Bamidele Shola
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11299)


Office-space-allocation (OFA) problem is a category of a timetabling problem that involves the distribution of a set of limited entities to a set of resources subject to satisfying a set of given constraints. The constraints in OFA problem is of two types: hard and soft. The hard constraints are the one that must be satisfied for the solution to be feasible while the violation of soft constraints is allowed but it must be reduced as much as possible. The quality of the OFA solution is determined by the satisfaction of the soft constraints in a feasible solution. The complexity of the OFA problem motivated the researchers in the domain of AI and Operational research to develop numerous metaheuristic-based techniques. Among recently introduced local search-based metaheuristic techniques that have been successfully utilized to solve complex optimization problem is the Late Acceptance Hill Climbing (LAHC) algorithm. This paper presents an adaptation of LAHC algorithm to tackle the OFA problem in which three neighbourhood structures are embedded with the operators of the LAHC algorithm in order to explore the solution space of the OFA efficiently. The benchmark instances proposed by the University of Nottingham and University of Wolverhampton datasets are employed in the evaluation of the proposed algorithm. The LAHC algorithm is able to produced one new result, two best results and competitive results when compared with the state-of-the-art methods.


Timetabling problem Office-space allocation Metaheuristics Late Acceptance Hill Climbing Local search-based methods 


  1. 1.
    Kellerer, H., Pferschy, U.: Cardinality constrained bin-packing problems. Ann. Oper. Res. 92, 335–348 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    McCollum, B.: A perspective on bridging the gap between theory and practice in university timetabling. In: Burke, E.K., Rudová, H. (eds.) PATAT 2006. LNCS, vol. 3867, pp. 3–23. Springer, Heidelberg (2007). Scholar
  3. 3.
    Ülker, Ö., Landa-Silva, D.: A 0/1 integer programming model for the office space allocation problem. Electron. Not. Discrete Math. 36, 575–582 (2010)CrossRefGoogle Scholar
  4. 4.
    Benjamin, C.O., Ehie, I.C., Omurtag, Y.: Planning facilities at the University of Missouri-Rolla. Interfaces 22(4), 95–105 (1992)CrossRefGoogle Scholar
  5. 5.
    Ritzman, L., Bradford, J., Jacobs, R.: A multiple objective approach to space planning for academic facilities. Manag. Sci. 25(9), 895–906 (1979)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Awadallah, M.A., Khader, A.T., Al-Betar, M.A., Woon, P.C.: Office-space-allocation problem using harmony search algorithm. In: Huang, T., Zeng, Z., Li, C., Leung, C.S. (eds.) ICONIP 2012. LNCS, vol. 7664, pp. 365–374. Springer, Heidelberg (2012). Scholar
  7. 7.
    Burke, E.K., Cowling, P., Landa Silva, J.D., McCollum, B.: Three methods to automate the space allocation process in UK universities. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 254–273. Springer, Heidelberg (2001). Scholar
  8. 8.
    Ülker, Ö., Landa-Silva, D.: Evolutionary local search for solving the office space allocation problem. In: 2012 IEEE Congress on Evolutionary Computation, CEC, pp. 1–8. IEEE (2012)Google Scholar
  9. 9.
    Bolaji, A.L., Michael, I., Shola, P.B.: Optimization of office-space allocation problem using artificial bee colony algorithm. In: Tan, Y., Takagi, H., Shi, Y. (eds.) ICSI 2017. LNCS, vol. 10385, pp. 337–346. Springer, Cham (2017). Scholar
  10. 10.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lopes, R., Girimonte, D.: The office-space-allocation problem in strongly hierarchized organizations. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 143–153. Springer, Heidelberg (2010). Scholar
  12. 12.
    Burke, E., Cowling, P., Silva, J.L.: Hybrid population-based metaheuristic approaches for the space allocation problem. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 232–239. IEEE (2001)Google Scholar
  13. 13.
    Burke, E., Cowling, P., Landa Silva, J., Petrovic, S.: Combining hybrid metaheuristics and populations for the multiobjective optimisation of space allocation problems. In: Proceedings of the 2001 Genetic and Evolutionary Computation Conference, GECCO 2001, pp. 1252–1259 (2001)Google Scholar
  14. 14.
    Burke, E.K., Silva, J.D.L., Soubeiga, E.: Multi-objective hyper-heuristic approaches for space allocation and timetabling. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics: Progress as Real Problem Solvers. ORCS, vol. 32, pp. 129–158. Springer, Boston (2005). Scholar
  15. 15.
    Burke, E.K., Bykov, Y.: A late acceptance strategy in hill-climbing for exam timetabling problems. In: PATAT 2008 Conference, Montreal, Canada (2008)Google Scholar
  16. 16.
    Yuan, B., Zhang, C., Shao, X.: A late acceptance hill-climbing algorithm for balancing two-sided assembly lines with multiple constraints. J. Intell. Manuf. 26(1), 159–168 (2015)CrossRefGoogle Scholar
  17. 17.
    Abuhamdah, A.: Experimental result of late acceptance randomized descent algorithm for solving course timetabling problems. Int. J. Comput. Sci. Netw. Secur. 10(1), 192–200 (2010)Google Scholar
  18. 18.
    Verstichel, J., Berghe, G.V.: A late acceptance algorithm for the lock scheduling problem. In: Voß, S., Pahl, J., Schwarze, S. (eds.) Logistik Management, pp. 457–478. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Tierney, K.: Late acceptance hill climbing for the liner shippingfleet repositioning problem. In: Proceedings of the 14th EU/MEWorkshop, pp. 21–27 (2013)Google Scholar
  20. 20.
    Goerler, A., Schulte, F., Voß, S.: An application of late acceptance hill-climbing to the traveling purchaser problem. In: Pacino, D., Voß, S., Jensen, R.M. (eds.) ICCL 2013. LNCS, vol. 8197, pp. 173–183. Springer, Heidelberg (2013). Scholar
  21. 21.
    Bolaji, A.L., Bamigbola, A.F., Shola, P.B.: Late acceptance hill climbing algorithm for solving patient admission scheduling problem. Knowl.-Based Syst. 145, 197–206 (2018)CrossRefGoogle Scholar
  22. 22.
    Alzaqebah, M., Abdullah, S.: An adaptive artificial bee colony and late-acceptance hill-climbing algorithm for examination timetabling. J. Sched. 17(3), 249–262 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Özcan, E., Bykov, Y., Birben, M., Burke, E.K.: Examination timetabling using late acceptance hyper-heuristics. In: IEEE Congress on Evolutionary Computation, CEC 2009, pp. 997–1004. IEEE (2009)Google Scholar
  24. 24.
    Jackson, W.G., Ozcan, E., Drake, J.H.: Late acceptance-based selection hyper-heuristics for cross-domain heuristic search. In: 2013 13th UK Workshop on Computational Intelligence, UKCI, pp. 228–235. IEEE (2013)Google Scholar
  25. 25.
    Landa-Silva, D., Burke, E.K.: Asynchronous cooperative local search for the office-space-allocation problem. INFORMS J. Comput. 19(4), 575–587 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Asaju La’aro Bolaji
    • 1
    Email author
  • Ikechi Michael
    • 2
  • Peter Bamidele Shola
    • 3
  1. 1.Department of Computer Science, Faculty of Pure and Applied SciencesFederal University WukariWukariNigeria
  2. 2.Andela OfficeLagosNigeria
  3. 3.Department of Computer ScienceUniversity of IlorinIlorinNigeria

Personalised recommendations