Advertisement

Picosecond Pulsed High-Peak-Power Lasers

  • Nikita G. Mikheev
  • Vyacheslav B. MorozovEmail author
  • Andrei N. Olenin
  • Vladimir G. Tunkin
  • Dmitrii V. Yakovlev
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)

Abstract

Recent trends in the use and development of advanced schemes of high peak-power picosecond lasers are reviewed. Pulsed (pulsed repetitive) high-peak-power picosecond lasers of millijoule and multi-millijoule single pulse level operating at reasonably high repetition rates are required in a number of scientific and technological applications. The developed approach utilizes active-passive mode-locked and negative feedback controlled oscillator that provides generation of stable, closed to transform limited pulses with pulse duration of 25 ps (with Nd:YAG) and 16 ps (with Nd:YLF). Oscillator—regenerative amplifier scheme based on the common diode-end-pumped laser crystal generates pulses up to 1.2 mJ with Nd:YAG and up to 2 mJ with Nd:YLF crystals. Two-pass Nd:YAG diode-end-pumped amplifier provides output radiation of 4 mJ single pulse energy at 300 Hz repetition rate, that was converted in the second harmonic with more than 60% efficiency. Numerical modeling allows adequate description of the pulse formation process. Using 300 μm thickness Fabry-Perot etalons with different reflection coatings inside oscillator provided generation of pulses with increased up to 120, 180 and 400 ps durations. Aberrative character of thermal lens and mode structure at end-pump geometry were analyzed using decomposition on embedded beams. It was supposed that resonator stability range might be enhanced owing to adaptive action of the aberration lens. Optimized pulse diode-end-pumped double-pass amplifier schemes utilizing Nd:YLF, Nd:YAG and Nd:YVO4 crystals are discussed.

Notes

Funding

The work was partly granted by M.V. Lomonosov Moscow State University Program of Development.

References

  1. 1.
    Y. Wang, K.B. Eisenthal, Picosecond laser studies of ultrafast processes in chemistry. J. Chem. Ed. 59(6), 482–489 (1982)CrossRefGoogle Scholar
  2. 2.
    S.-B. Zhu, J. Lee, G.W. Robinson, Effects of an intense picosecond laser on liquid carbon disulfide: a molecular dynamics study. J. Opt. Soc. Am. B 6(2), 250–256 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    V.G. Arakcheev, V.V. Kireev, V.B. Morozov, A.N. Olenin, V.G. Tunkin, A.A. Valeev, D.V. Yakovlev, Collisionally induced dephasing and rotational energy transfer in CO2 Fermi dyad “blue” Q-branch 1388 cm−1. J. Raman Spectr. 38(8), 1046–1051 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    A. Montello, M. Nishihara, J.W. Rich, I.V. Adamovich, W.R. Lempert, Picosecond CARS measurements of nitrogen rotational/translational and vibrational temperature in a nonequilibrium Mach 5 flow. Exp. Fluids 54, 1422 (2013)CrossRefGoogle Scholar
  5. 5.
    R. Knappe, Applications of picoseconds lasers and pulse-bursts in precision manufacturing. Proc. SPIE 8243, 82430I (2012)ADSCrossRefGoogle Scholar
  6. 6.
    S. Brüning, G. Hennig, S. Eifel, A. Gillner, Ultrafast scan techniques for 3D micrometer structuring of metal surfaces with high repetitive ps-laser pulses, in Lasers in Manufacturing (Munich, 2011)Google Scholar
  7. 7.
    P. Likschat, A. Demba, S. Weissmantel, Ablation of steel using picoseconds laser pulses in burst mode. Appl. Phys. A 123, 137 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    G. Scotti, D. Trusheim, P. Kanninen, D. Naumenko, M. Shulz-Ruhtenberg, V. Snitka, T. Kallio, S. Franssila, Picosecond laser ablation for silicon micro fuel cell fabrication. J. Micromech. Microeng. 23, 055021 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    J. Albello, P. Piogovsky, J. O’Brien, B. Baird, Picosecond laser micromachining of advanced semiconductor logic devices. Proc. SPIE 6871, 687122 (2008)CrossRefGoogle Scholar
  10. 10.
    R. Moser, M. Kunzer, C. Gossler, K. Kӧhler, W. Pletschen, U.T. Schwarz, J. Wagner, Laser processing of gallium nitride-based light-emitting diodes with ultraviolet picoseconds laser pulses. Opt. Eng. 51(11), 114301 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    E. Markauskas, P. Gečys, I. Repins, C. Beall, G. Račiukaitis, Laser lift-off scribing of the CZTSe thin-film solar cells at different pulse durations. Sol. Energy 150, 246–254 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    M. Domke, G. Heise, I. Richter, S. Sarrach, H.P. Huber, Pump-probe investigations on the laser ablation of CIS thin film solar cells. Phys. Procedia 12, 396–403 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    G.J. Spuhler, R. Paschotta, U. Keller, M. Moser, M.J.P. Dymott, D. Kopf, J. Meyer, K.J. Weingarten, J.D. Kmetec, J. Alexander, G. Truong, Diode-pumped passively mode-locked Nd:YAG laser with 10-W average power in a diffraction-limited beam. Opt. Lett. 24(8), 528–530 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    J. Kleinbauer, R. Knappe, R. Wallenstein, A powerful diode-pumped laser source for micro-machining with ps pulses in the infrared, the visible and the ultraviolet. Appl. Phys. B 80, 315–320 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    X. Wushouer, P. Yan, H. Yu, Q. Liu, X. Fu, X. Yan, M. Gong, High peak power picosecond hybrid fiber and solid-state amplifier system. Laser Phys. Lett. 7(9), 644–649 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Z.G. Peng, M. Chen, C. Yang, L. Chang, G. Li, A cavity-dumped and regenerative amplifier system for generating high-energy, high-repetition-rate picosecond pulses. Jpn. J. Appl. Phys. 54, 028001 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    Z. Ma, D.-J. Li, P. Shi, P.-X. Hu, N.-L. Wu, K.-M. Du, Compact multipass Nd:YVO4 slab laser amplifier. J. Opt. Soc. B. 24(5), 1061–1065 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    C.K. Nielsen, B. Ortac¸, T. Schreiber, J. Limpert, R. Hohmuth,W. Richter, A. Tünnermann, Self-starting self-similar all-polarization maintaining Yb-doped fiber laser. Opt. Expr. 13(23), 9346–9351 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    L.A. Gomes, L. Orsila, T. Jouhti, O.G. Okhotnikov, Picosecond SESAM-based ytterbium mode-locked fiber lasers. IEEE J. Sel. Top. Quant. Electr. 10(1), 129–136 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    M.E. Fermann, I. Hartl, Ultrafast fiber laser technology. IEEE J. Sel. Top. Quant. Electr. 15(1), 191–206 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    P. Dupriez, A. Piper, A. Malinowski, J.K. Sahu, M. Ibsen, B.C. Thomsen, Y. Jeong, L.M.B. Hickey, M.N. Zervas, J. Nilsson, D.J. Richardson, High average power, high repetition rate, picosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm. IEEE Photonics Technol. Lett. 18(9), 1013–1015 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    H.-Y. Chan, S. Alam, L. Xu, J. Bateman, D.J. Richardson, D.P. Shepherd, Compact, high-pulse-energy, high-power, picoseconds master oscillator power amplifier. Opt. Expr. 22(18), 21938–21942 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    S. Matsubara, M. Tanaka, M. Takama, H. Hitotsuya, T. Kobayashi, S. Kawato, A picosecond thin-rod Yb:YAG regenerative laser amplifier with the high average power of 20W. Laser Phys. Lett. 10, 055810–055814 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    K.-H. Hong, A. Siddiqui, J. Moses, J. Gopinath, J. Hybl, F.Ö. Ilday, T.Y. Fan, F.X. Kärtner, Generation of 287 W, 5.5 ps pulses at 78 MHz repetition rate from a cryogenically cooled Yb:YAG amplifier seeded by a fiber chirped-pulse amplification system. Opt. Lett. 33(21), 2473–2475 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Z. Ma, D. Li, P. Shi, P. Hu, N. Wu, K. Du, Compact multipass Nd:YVO4 slab laser amplifier based on a hybrid resonator. J. Opt. Soc. Am. B. 24(5), 1061–1064 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    K.K. Chen, J.H.V. Price, S. Alam, J.R. Hayes, D. Lin, A. Malinowski, D.J. Richardson, Polarisation maintaining 100 W Yb-fiber MOPA producing μJ pulses tunable in duration from 1 to 21 ps. Opt. Expr. 18(14), 14385–1394 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    T. Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 35(2), 94–96 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    D.J. Richardson, J. Nilsson, W.A. Clarkson, High power fiber lasers: current status and future perspectives. J. Opt. Soc. Am. B 27(11), B63–B92 (2010)CrossRefGoogle Scholar
  29. 29.
    H. Lin, J. Li, X. Liang, 105 W, <10 ps, TEM 00 laser output based on an in-band pumped Nd: YVO4 Innoslab amplifier. Opt. Lett. 37(13), 2634–2636 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    P. Russbueldt, D. Hoffmann, M. Hӧfer, J. Lӧhring, J. Luttmann, A. Meissner, J. Weitenberg, M. Traub, T. Sartorius, D. Esser, R. Wester, P. Loosen, R. Poprawe, Innoslab amplifiers. IEEE J. Sel. Top. Quant. Electr. 21(1), 3100117 (2015)CrossRefGoogle Scholar
  31. 31.
    D. Li, K. Du, Picosecond laser with 400 W average power and 1 mJ pulse energy. Proc. SPIE 7912, 79120N (2011)ADSCrossRefGoogle Scholar
  32. 32.
    A. Giesen, J. Speiser, Fifteen years of work on thin-disk lasers: results and scaling laws. IEEE J. Sel. Top. Quant. Electron 13(3), 598–609 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    C.J. Saraceno, F. Emaury, C. Schriber, A. Diebold, M. Hoffmann, M. Golling, T. Südmeyer, U. Keller, Toward millijoule-level high-power ultrafast thin-disk oscillators. IEEE J. Sel. Top. Quant. Electron 13(3), 598–609 (2007)CrossRefGoogle Scholar
  34. 34.
    J.-P. Negel, A. Loescher, A. Voss, D. Bauer, D. Sutter, A. Killi, M.A. Ahmed, T. Graf, Ultrafast thin-disk multipass laser amplifier delivering 1.4 kW (4.7 mJ, 1030 nm) average power converted to 820 W at 515 nm and 234 W at 343 nm. Opt. Expr. 23(16), 21064–21077 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    J. Fischer, A.-C. Heinrich, S. Maier, J. Jungwirth, D. Brida, A. Leitenstorfer, 615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate. Opt. Lett. 41, 246–249 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    T. Seeger, J. Kiefer, A. Leipertz, B.D. Patterson, C.J. Kliewer, T.B. Settersten, Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N2 thermometry. Opt. Lett. 34(23), 3755–3757 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    G. Seeber, Satellite Geodesy (Walter de Gruyter, Berlin, New York, 2003) (Chapter 8)Google Scholar
  38. 38.
    B. Gourine, French transportable laser ranging station: positioning campaigns for satellite altimeter calibration missions in occidental Mediterranean Sea. Larhyss J. 12, 57–69 (2013)Google Scholar
  39. 39.
    J.O. Dickey, P.L. Bender, J.E. Faller, X.X. Newhall, R.L. Ricklefs, J.G. Ries, P.J. Shelus, C. Veillet, A.L. Whipple, J.R. Wiant, J.G. Williams, C.F. Yoder, Lunar laser ranging: a continuing legacy of the Apollo Program. Science 265(5171), 482–490 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    J.G. Williams, S.G. Turyshev, D.H. Boggs, Progress in Lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 93, 261101 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    R. Intartaglia, K. Bagga, F. Brandi, Study on the productivity of silicon nanoparticles by picosecond laser ablation in water: towards gram per hour yield. Opt. Expr. 22(3), 3117–3127 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    E.I. Gacheva, A.K. Poteomkin, SYu. Mironov, V.V. Zelenogorskii, E.A. Khazanov, K.B. Yushkov, A.I. Chizhikov, V.Ya. Molchanov, Fiber laser with random-access pulse train profiling for a photoinjector driver. Photonics Res. 5(4), 293–298 (2017)CrossRefGoogle Scholar
  43. 43.
    M. Petrarca, M. Martyanov, M.S. Divall, G. Luchinin, Study of the powerful Nd:YLF laser amplifiers for the CTF3 photoinjectors. IEEE J. Quant. Electr. 47, 306–313 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    G. Mourou, C.V. Stancampiano, A. Antonetti, A. Orszag, Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch. Appl. Phys. Lett. 39(4), 295–296 (1981)ADSCrossRefGoogle Scholar
  45. 45.
    W. Koechner, Solid-State Laser Engineering (Springer, 2014)Google Scholar
  46. 46.
    R.-Q. Xu, Y.-R. Song, Z.-K. Dong, K.-X. Li, J.-R. Tian, Compact Yb-doped mode-locked fiber laser with only one polarized beam splitter. Appl. Opt. 56(6), 1674–1681 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, A. Tünnermann, High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime. Opt. Lett. 32(15), 2115 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    D. Derickson, R. Helkey, A. Mar, J. Karin, J. Wasserbauer, J. Bowers, Short pulse generation using multisegment mode-locked semiconductor lasers. IEEE J. Quant. Electr. 28(10), 2186–2202 (1992)ADSCrossRefGoogle Scholar
  49. 49.
    J.C. Balzer, T. Schlauch, T. Hoffmann, A. Klehr, G. Erbert, M.R. Hofmann, Modelocked semiconductor laser system with pulse picking for variable repetition rate. Electron. Lett. 47(25), 1387–1388 (2011)CrossRefGoogle Scholar
  50. 50.
    P. Heinz, A. Laubereau, Feedback-controlled mode-locking operation of Nd-doped crystal lasers. J. Opt. Soc. Am. B 7(2), 182–186 (1990)ADSCrossRefGoogle Scholar
  51. 51.
    A. Agnesi, C. Pennacchio, G.C. Reali, V. Kubecek, High-power diode-pumped picosecond Nd3+:YVO4 laser. Opt. Lett. 22(21), 1645–1647 (1997)ADSCrossRefGoogle Scholar
  52. 52.
    A.V. Ramamurthi, K.P.J. Reddy, Theory of combined AM and high-harmonic FM mode-locked laser. Pramana-J. Phys. 52(1), 19–24 (1999)ADSCrossRefGoogle Scholar
  53. 53.
    U. Keller, K.J. Weingarten, F.X. Kärtner, D. Kopf, B. Braun, I.D. Jung, R. Fluck, C. Honninger, N. Matuschek, J.A. der Au, Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE. Sel. Top. Quant. Electr. 2(3), 1077–1079 (1996)Google Scholar
  54. 54.
    U. Keller, Recent development in compact ultrafast lasers. Nature 424, 831–838 (2003); U. Keller, Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Appl. Phys. B. 100(1), 15–28 (2010)Google Scholar
  55. 55.
    M.V. Gorbunkov, A.V. Konyashkin, P.V. Kostryukov, V.B. Morozov, A.N. Olenin, V.A. Rusov, L.S. Telegin, V.G. Tunkin, Y. Shabalin, D.V. Yakovlev, Pulsed-diode-pumped, all-solid-state, electro-optically controlled picosecond Nd:YAG lasers. Quant. Electron. 35(1), 2–6 (2005)ADSCrossRefGoogle Scholar
  56. 56.
    A. Del Corno, G. Gabetta, G.C. Reali, V. Kubecek, J. Marek, Active-passive mode-locked Nd:YAG laser with passive negative feedback. Opt. Lett. 15(13), 734–736 (1990)ADSCrossRefGoogle Scholar
  57. 57.
    A.A. Karnaukhov, V.B. Morozov, A.N. Olenin, D.V. Yakovlev, Precise synchronization of qcw pumped active-passive mode locked picosecond lasers. J. Phys. Conf. Ser. 414, 012–027 (2013)Google Scholar
  58. 58.
    A. Sennaroglu, Solid-State Lasers and Applications (2007), pp. 1–76Google Scholar
  59. 59.
    P. Wang, S.-H. Zhou, K.K. Lee, Y.C. Chen, Picosecond laser pulse generation in a monolithic self-Q-switched solid-state laser. Opt. Comm. 114, 439–441 (1995)ADSCrossRefGoogle Scholar
  60. 60.
    J.J. Zayhowski, Passively Q-switched Nd:YAG microchip lasers and applications. J. All. Comp. 303–304, 393–400 (2000)CrossRefGoogle Scholar
  61. 61.
    D. Nodop, J. Limpert, R. Hohmuth, W. Richter, M. Guina, A. Tünnermann, High-pulse-energy passively Q-switched quasi-monolithic microchip lasers operating in the sub-100-ps pulse regime. Opt. Lett. 32(15), 2115–2117 (2007)ADSCrossRefGoogle Scholar
  62. 62.
    G.J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, U. Keller, Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers. J. Opt. Soc. Am. B. 16(3), 376–388 (1999)ADSCrossRefGoogle Scholar
  63. 63.
    B. Ryvkin, E. Avrutin, J. Kostamovaara, Asymmetric-waveguide laser diode for high-power optical pulse generation by gain switching. IEEE J. Lightwave Technol. 27(12), 2125–2131 (2009)ADSCrossRefGoogle Scholar
  64. 64.
    J.E. Murray, W.H. Lowdermilk, Nd:YAG regenerative amplifier. J. Appl. Phys. B. 51(7), 3548–3555 (1980)ADSCrossRefGoogle Scholar
  65. 65.
    P. Bado, M. Bouvier, J.S. Coe, Nd:YLF mode-locked oscillator and regenerative amplifier. Opt. Lett. 12(5), 319–321 (1987)ADSCrossRefGoogle Scholar
  66. 66.
    J.C. Postlewaite, J.B. Miers, C.C. Reiner, D.D. Dlott, Picosecond Nd:YAG regenerative amplifier with acoustooptic injection and electrooptic VFET pulse switchout. IEEE J. Quant. Electr. 24(2), 411–417 (1988)ADSCrossRefGoogle Scholar
  67. 67.
    M.D. Dawson, W.A. Schroeder, D.P. Norwood, A.L. Smirl, J. Weston, R.N. Ettelbrick, R. Aubert, Characterization of a high-gain picosecond flash-lamp-pumped Nd:YAG regenerative amplifier. Opt. Lett. 13(11), 990–992 (1988)ADSCrossRefGoogle Scholar
  68. 68.
    D.R. Walker, C.J. Flood, H.M. van Driel, U.J. Greiner, H.H. Klingenberg, High power diode-pumped Nd:YAG regenerative amplifier for picoseconds pulses. Appl. Phys. Lett. 65(16), 1992–1994 (1994)ADSCrossRefGoogle Scholar
  69. 69.
    M. Siebold, M. Hornung, J. Hein, G. Paunescu, R. Sauerbrey, T. Bergmann, G. Hollemann, A high-average-power diode-pumped Nd:YVO4 regenerative laser amplifier for picoseconds pulses. Appl. Phys. B 78, 287–290 (2004)ADSCrossRefGoogle Scholar
  70. 70.
    J. Kleinbauer, R. Knappe, R. Wallenstein, Ultrashort pulse lasers and amplifiers based on Nd:YVO4 and Yb:YAG bulk crystals, in: Femtosecond Technology for Technical and Medical Applications, ed. by F. Dausinger, F. Lichtner, H. Lubatschowski; Topics Appl. Phys. 96, 17–34 (2004)Google Scholar
  71. 71.
    M. Lührmann, C. Theobald, R. Wallenstein, J.A. L’huillier, High energy cw-diode pumped Nd:YVO4 regenerative amplifier with efficient second harmonic generation. Opt. Expr. 17(25), 22761–22766 (2009)ADSCrossRefGoogle Scholar
  72. 72.
    M.V. Gorbunkov, P.V. Kostryukov, V.B. Morozov, A.N. Olenin, L.S. Telegin, V.G. Tunkin, D.V. Yakovlev, Spatial radiation intensity distribution of linear diode arrays and calculation of inversion in fiber-coupled end-pumped solid-state lasers. Quant. Electr. 35(12), 1121–1125 (2005)ADSCrossRefGoogle Scholar
  73. 73.
    V.B. Morozov, A.N. Olenin, V.G. Tunkin, D.V. Yakovlev, Operation conditions for a picosecond laser with an aberration thermal lens under longitudinal pulsed diode pumping. Quant. Electr. 41(6), 508–514 (2011)ADSCrossRefGoogle Scholar
  74. 74.
  75. 75.
    H.A. Haus, Mode-locking of lasers. IEEE J. Sel. Top. Quant. Electr. 6(6), 1173–1185 (2000)ADSCrossRefGoogle Scholar
  76. 76.
    N.G. Mikheev, V.B. Morozov, A.N. Olenin, D.V. Yakovlev, Picosecond lasers with the dynamical operation control. Proc. SPIE 9917, 99170A (2016)ADSGoogle Scholar
  77. 77.
    D.J. Kuizenga, A.E. Siegman, FM and AM mode locking of the homogeneous laser-part I: theory. IEEE J. Quant. Electr. QE-6(11), 694–708 (1970)ADSCrossRefGoogle Scholar
  78. 78.
    H. Roskos, T. Robl, A. Seilmeier, Pulse shortening to 25 ps in a cw mode-locked Nd:YAG laser by introducing an intracavity etalon. Appl. Phys. B 40, 59–65 (1986)ADSCrossRefGoogle Scholar
  79. 79.
    Q.S. Panga, Y. Liub, L. Changa, L.Z. Xua, C. Yanga, M. Chena, G. Lia, Adjustable picosecond pulse duration in a LD end pumped SESAM passively mode-locked Nd:YVO4 laser. Laser Phys. 21(6), 1009–1012 (2011)ADSCrossRefGoogle Scholar
  80. 80.
    A.E. Siegman, How to (maybe) measure laser beam quality. OSA TOPS 17, 184–199 (1998)Google Scholar
  81. 81.
    A.E. Siegman, Defining the effective radius of curvature for a nonideal optical beam. IEEE J. Quant. Electr. 27(5), 1146–1148 (1991)ADSCrossRefGoogle Scholar
  82. 82.
    L.M. Frantz, J.S. Nodvik, Theory of pulse propagation in a laser amplifier. J. Appl. Phys. 34, 2346 (1963)ADSCrossRefGoogle Scholar
  83. 83.
    C. Dolda, G. Eberleb, K. Jefimovsc, M. Axtnerd, F. Pudea, K. Wegenera, Analysis of damage thresholds of laser scanning mirrors using ultrashort laser pulses. Phys. Procedia 12, 445–451 (2011)ADSCrossRefGoogle Scholar
  84. 84.
    D.E. Zelmon, K.L. Schepler, S. Guha, D.J. Rush, S.M. Hegde, L.P. Gonzalez, J. Lee, Optical properties of Nd-doped ceramic yttrium aluminum garnet. Proc. SPIE. 5647; Laser-Induced Damage in Optical Materials, vol. 2004 (2005), pp. 255–264Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nikita G. Mikheev
    • 1
  • Vyacheslav B. Morozov
    • 2
    Email author
  • Andrei N. Olenin
    • 2
  • Vladimir G. Tunkin
    • 1
  • Dmitrii V. Yakovlev
    • 2
  1. 1.Faculty of PhysicsM.V. Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Faculty of PhysicsInternational Laser Center, M.V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations