Advertisement

Optical and Magnetic Functionalities on Molecule-Based Magnetic Materials

  • Koji Nakabayashi
  • Shin-ichi OhkoshiEmail author
  • Szymon Chorazy
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)

Abstract

In this chapter, the optical and magnetic properties of multifunctional cyanido-bridged metal assemblies are introduced. Cyanido-bridged metal assemblies draw much attention due to their magnetic properties and functionalities. As for magnetic properties, they have an advantage to show long-range magnetic ordering due to strong magnetic couplings between magnetic metal ions via cyanide. In addition, the cyanido-bridged metal assemblies can acquire structural diversity and various electronic states by combination of metal ions and ligand, resulted in their functionalities. For examples, introduction of transition metal ions showing charge transfer and spin crossover could allow switching of spin states by external stimuli, and metal assemblies containing lanthanide ions are expected to show luminescence and slow magnetic relaxation. Herein, some cyanido-bridged metal assemblies with unique characters of photoinduced magnetization, luminescence, and slow magnetic relaxation are presented.

References

  1. 1.
    A.K.T. Lau, J. Lu, V.K. Varadan, F.K. Chang, J.P. Tu, P.M. Lam, Multi-functional Materials and Structures (Trans Tech Publications, Hong Kong, 2008)Google Scholar
  2. 2.
    S.M. Mukhopadhyay, Nanoscale Multifunctional Materials: Science and Applications (Wiley, New Jersey, 2012)Google Scholar
  3. 3.
    H. Tokoro, S. Ohkoshi, Dalton Trans. 40, 6825 (2011)CrossRefGoogle Scholar
  4. 4.
    E. Coronado, C. Gimnez-Saiz, C. Marti-Gastaldo, Engineering of Crystalline Materials Properties, ed. by J.J. Novoa, D. Braga, L. Addadi (Springer, Dordrecht, 2008), pp. 173Google Scholar
  5. 5.
    D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 36, 770 (2007)CrossRefGoogle Scholar
  6. 6.
    P. Dechambenoit, J.R. Long, Chem. Soc. Rev. 40, 3249 (2011)CrossRefGoogle Scholar
  7. 7.
    M.D. Allendorf, C.A. Bauer, R.K. Bhakta, R.J.T. Houk, Chem. Soc. Rev. 38, 1330 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Ohkoshi, H. Tokoro, Acc. Chem. Res. 45, 1749 (2012)CrossRefGoogle Scholar
  9. 9.
    E. Coronado, D. Gatteschi, J. Mater. Chem. 16, 2513 (2006)CrossRefGoogle Scholar
  10. 10.
    H. Tokoro, S. Ohkoshi, Bull. Chem. Soc. Jpn. 88, 227 (2015)CrossRefGoogle Scholar
  11. 11.
    O. Kahn, O. Cador, J. Larionova, C. Mathoniere, J.-P. Sutter, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 305(1) (1997)Google Scholar
  12. 12.
    C. Train, M. Gruselle, M. Verdaguer, Chem. Soc. Rev. 40, 3297 (2011)CrossRefGoogle Scholar
  13. 13.
    C. Train, R. Gheorghe, V. Krstic, L.-M. Chamoreau, N.S. Ovanesyan, G.L.J.A. Rikken, M. Gruselle, M. Verdaguer, Nat. Mater. 7, 729 (2008)CrossRefADSGoogle Scholar
  14. 14.
    K. Inoue, K. Kikuchi, M. Ohba, H. Okawa, Angew. Chem. Int. Ed. 42, 4810 (2003)CrossRefGoogle Scholar
  15. 15.
    S. Chorazy, R. Podgajny, W. Nitek, T. Fic, E. Gçrlich, M. Rams, B. Sieklucka, Chem. Com-mun. 49, 6731 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Chorazy, K. Nakabayashi, K. Imoto, J. Mlynarski, B. Sieklucka, S. Ohkoshi, J. Am. Chem. Soc. 134, 16151 (2012)CrossRefGoogle Scholar
  17. 17.
    J. Ferrando-Soria, D. Cangussu, M. Eslava, Y. Journaux, R. Lescouézec, M. Julve, F. Lloret, J. Pasan, C. Ruiz-Perez, E. Lhotel, C. Paulsen, E. Pardo, Chem. Eur. J. 17, 12482 (2011)CrossRefGoogle Scholar
  18. 18.
    J.M. Bradley, A.J. Thomson, R. Inglis, C.J. Milios, E.K. Brechin, S. Piligkos, Dalton Trans. 39, 9904 (2010)CrossRefGoogle Scholar
  19. 19.
    T. Nuida, T. Matsuda, H. Tokoro, S. Sakurai, K. Hashimoto, S. Ohkoshi, J. Am. Chem. Soc. 127, 11604 (2005)CrossRefGoogle Scholar
  20. 20.
    S. Ohkoshi, K. Arai, Y. Sato, K. Hashimoto, Nat. Mater. 3, 857 (2004)CrossRefADSGoogle Scholar
  21. 21.
    Y. Tsunobuchi, W. Kosaka, T. Nuida, S. Ohkoshi, Cryst. Eng. Comm. 11, 2051 (2009)CrossRefGoogle Scholar
  22. 22.
    D. Pinkowicz, R. Podgajny, W. Nitek, M. Rams, A.M. Majcher, T. Nuida, S. Ohkoshi, B. Sieklucka, Chem. Mater. 23, 21 (2011)CrossRefGoogle Scholar
  23. 23.
    M. Komine, K. Imoto, Y. Miyamoto, K. Nakabayashi, S. Ohkoshi, Eur. J. Inorg. Chem., 1367 (2018)Google Scholar
  24. 24.
    C. Train, T. Nuida, R. Gheorghe, M. Gruselle, S. Ohkoshi, J. Am. Chem. Soc. 131, 16838 (2009)CrossRefGoogle Scholar
  25. 25.
    E. Pardo, C. Train, H. Liu, L.M. Chamoreau, B. Dhkil, K. Boubekeur, F. Lloret, K. Nakatani, H. Tokoro, S. Ohkoshi, M. Verdaguer, Angew. Chem. Int. Ed. 51, 8356 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Ohkoshi, H. Tokoro, T. Matsuda, H. Takahashi, H. Irie, K. Hashimoto, Angew. Chem. Int. Ed. 46, 3238 (2007)CrossRefGoogle Scholar
  27. 27.
    S. Ohkoshi, K. Imoto, Y. Tsunobuchi, S. Takano, H. Tokoro, Nat. Chem. 3, 564 (2011)CrossRefGoogle Scholar
  28. 28.
    E.S. Koumousi, I.-R. Jeon, Q. Gao, P. Dechambenoit, D.N. Woodruff, P. Merzeau, L. Buisson, X. Jia, D. Li, F. Volatron, C. Mathonière, R. Clérac, J. Am. Chem. Soc. 136, 15461 (2014)CrossRefGoogle Scholar
  29. 29.
    O.N. Risset, P.A. Quintero, T.V. Brinzari, M.J. Andrus, M.W. Lufaso, M.W. Meisel, D.R. Talham, J. Am. Chem. Soc. 136, 15660 (2014)CrossRefGoogle Scholar
  30. 30.
    S. Ohkoshi, Y. Hamada, T. Matsuda, Y. Tsunobuchi, H. Tokoro. Chem. Mater. 20, 3048 (2008)CrossRefGoogle Scholar
  31. 31.
    S. Ohkoshi, S. Ikeda, T. Hozumi, T. Kashiwagi, K. Hashimoto, J. Am. Chem. Soc. 128, 5320 (2006)CrossRefGoogle Scholar
  32. 32.
    N. Ozaki, H. Tokoro, Y. Hamada, A. Namai, T. Matsuda, S. Kaneko, S. Ohkoshi, Adv. Funct. Mater. 22, 2089 (2012)CrossRefGoogle Scholar
  33. 33.
    S. Ohkoshi, S. Takano, K. Imoto, M. Yoshikiyo, A. Namai, H. Tokoro, Nat. Photonics 8, 65 (2014)CrossRefADSGoogle Scholar
  34. 34.
    J.-M. Rueff, J.-F. Nierengarten, P. Gillot, A. Demessence, O. Cregut, M. Drillon, P. Ra-bu, Chem. Mater. 16, 2933 (2004)CrossRefGoogle Scholar
  35. 35.
    E. Chelebaeva, J. Larionova, Y. Guari, R.A.S. Ferreira, L.D. Carlos, F.A. Almeida Paz, A. Trifonov, C. Guerin, Inorg. Chem. 48, 5983 (2009)CrossRefGoogle Scholar
  36. 36.
    Y. Miyamoto, T. Nasu, N. Ozaki, Y. Umeta, H. Tokoro, K. Nakabayashi, S. Ohkoshi, Dalton Trans. 45, 19249 (2016)CrossRefGoogle Scholar
  37. 37.
    Y. Umeta, S. Chorazy, K. Nakabayashi, S. Ohkoshi, Eur. J. Inorg. Chem., 1980 (2016)Google Scholar
  38. 38.
    S. Chorazy, K. Nakabayashi, S. Ohkoshi, B. Sieklucka, Chem. Mater. 26, 4072 (2014)CrossRefGoogle Scholar
  39. 39.
    S. Chorazy, M. Rams, K. Nakabayashi, B. Sieklucka, S. Ohkoshi, Chem. Eur. J. 22, 7371 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Koji Nakabayashi
    • 1
  • Shin-ichi Ohkoshi
    • 1
    Email author
  • Szymon Chorazy
    • 2
  1. 1.Department of Chemistry, School of ScienceThe University of TokyoBunkyo-ku, TokyoJapan
  2. 2.Faculty of ChemistryJagiellonian UniversityKrakówPoland

Personalised recommendations