Advertisement

Generation and Transformation of Light Beams with Polarization Singularities in Three-Wave Mixing Processes in Isotropic Nonlocal Medium

  • K. S. GrigorievEmail author
  • I. A. Perezhogin
  • N. N. Potravkin
  • V. A. Makarov
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)

Abstract

The emerging and evolution of polarization singularities in various nonlinear optical processes in isotropic media was studied both analytically and numerically. The interacting light beams with non-uniform polarization were considered in parabolic approximation and the longitudinal components of their fields were taken into account. The generation of the nonlinear signal from the bulk and surface of the medium was shown to be caused by its chirality and nonlocal quadratic response.

References

  1. 1.
    J.F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics Publishing, Bristol and Philadelphia, 1999)zbMATHGoogle Scholar
  2. 2.
    J.F. Nye, M.V. Berry, Proc. R. Soc. A 336(1605), 165 (1974).  https://doi.org/10.1098/rspa.1974.0012ADSCrossRefGoogle Scholar
  3. 3.
    J.F. Nye, Proc. R. Soc. A 389(1797), 279 (1983).  https://doi.org/10.1098/rspa.1983.0109ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
  5. 5.
    L. Allen, M. Beijersbergen, R. Spreeuw, J. Woerdman, Phys. Rev. A 45, 8185 (1992).  https://doi.org/10.1103/PhysRevA.45.8185. http://link.aps.org/doi/10.1103/PhysRevA.45.8185ADSCrossRefGoogle Scholar
  6. 6.
    J. Strohaber, T.D. Scarborough, C.J.G.J. Uiterwaal, Appl. Opt. 46(36), 8583 (2007).  https://doi.org/10.1364/AO.46.008583. http://ao.osa.org/abstract.cfm?URI=ao-46-36-8583ADSCrossRefGoogle Scholar
  7. 7.
    E. Brasselet, N. Murazawa, H. Misawa, S. Juodkazis, Phys. Rev. Lett. 103, 103903 (2009).  https://doi.org/10.1103/PhysRevLett. 103.103903. http://link.aps.org/doi/10.1103/PhysRevLett.103.103903
  8. 8.
    F. Cardano, E. Karimi, L. Marrucci, C. de Lisio, E. Santamato, Opt. Express 21(7), 8815 (2013).  https://doi.org/10.1364/OE.21.008815. http://www.opticsexpress.org/abstract.cfm?URI=oe-21-7-8815ADSCrossRefGoogle Scholar
  9. 9.
    B. Yang, E. Brasselet, J. Opt 15(4), 044021 (2013). http://stacks.iop.org/2040-8986/15/i=4/a=044021
  10. 10.
  11. 11.
    R. Won, Nat. Photon. 8(1), 8 (2014). http://dx.doi.org/10.1038/nphoton.2013.358
  12. 12.
    O. Angelsky, I. Mokhun, A. Mokhun, M. Soskin, Phys. Rev. E 65, 036602 (2002).  https://doi.org/10.1103/PhysRevE.65.036602. http://link.aps.org/doi/10.1103/PhysRevE.65.036602
  13. 13.
    M. Burresi, R. Engelen, A. Opheij, D. van Oosten, D. Mori, T. Baba, L. Kuipers, Phys. Rev. Lett. 102, 033902 (2009).  https://doi.org/10.1103/PhysRevLett.102.033902. http://link.aps.org/doi/10.1103/PhysRevLett.102.033902
  14. 14.
    E. Brasselet, S. Juodkazis, Phys. Rev. A 82, 063832 (2010).  https://doi.org/10.1103/PhysRevA.82.063832. http://link.aps.org/doi/10.1103/PhysRevA.82.063832
  15. 15.
  16. 16.
  17. 17.
  18. 18.
    F. Flossmann, K. O‘Holleran, M.R. Dennis, M.J. Padgett, Phys. Rev. Lett. 100, 203902 (2008).  https://doi.org/10.1103/PhysRevLett.100.203902. http://link.aps.org/doi/10.1103/PhysRevLett.100.203902
  19. 19.
    A. Volyar, T. Fadeeva, Tech. Phys. Lett. 28(2), 102 (2002).  https://doi.org/10.1134/1.1458503. http://dx.doi.org/10.1134/1.1458503ADSCrossRefGoogle Scholar
  20. 20.
    C.N. Alexeyev, B.P. Lapin, M.A. Yavorsky, Phys. Rev. A 78, 013813 (2008).  https://doi.org/10.1103/PhysRevA.78.013813. http://link.aps.org/doi/10.1103/PhysRevA.78.013813
  21. 21.
    A.D. Kiselev, J. Phys. Cond. Matt. 19(24), 246102 (2007). http://stacks.iop.org/0953-8984/19/i=24/a=246102
  22. 22.
    N.F. Smyth, W. Xia, J. Phys. B 45(16), 165403 (2012). http://stacks.iop.org/0953-4075/45/i=16/a=165403
  23. 23.
    M.V. Berry, M.R. Dennis, R.L. Lee Jr., New J. Phys. 6(1), 162 (2004). http://stacks.iop.org/1367-2630/6/i=1/a=162ADSCrossRefGoogle Scholar
  24. 24.
  25. 25.
  26. 26.
    M. Zrch, C. Kern, P. Hansinger, A. Dreischuh, C. Spielmann, Nat. Phys. 8, 743 (2012).  https://doi.org/10.1038/nphys2397CrossRefGoogle Scholar
  27. 27.
    A.P. Sukhorukov, A.A. Kalinovich, G. Molina-Terriza, L. Torner, Phys. Rev. E 66, 036608 (2002).  https://doi.org/10.1103/PhysRevE.66.036608. http://link.aps.org/doi/10.1103/PhysRevE.66.036608
  28. 28.
    F. Lenzini, S. Residori, F.T. Arecchi, U. Bortolozzo, Phys. Rev. A 84, 061801 (2011).  https://doi.org/10.1103/PhysRevA.84.061801. http://link.aps.org/doi/10.1103/PhysRevA.84.061801
  29. 29.
    A.V. Ilyenkov, A.I. Khiznyak, L.V. Kreminskaya, M.S. Soskin, M.V. Vasnetsov, Appl. Phys. B 62(5), 465 (1996).  https://doi.org/10.1007/BF01081045. http://dx.doi.org/10.1007/BF01081045ADSCrossRefGoogle Scholar
  30. 30.
    A. Dreischuh, D.N. Neshev, V.Z. Kolev, S. Saltiel, M. Samoc, W. Krolikowski, Y.S. Kivshar, Opt. Express 16(8), 5406 (2008).  https://doi.org/10.1364/OE.16.005406. http://www.opticsexpress.org/abstract.cfm?URI=oe-16-8-5406ADSCrossRefGoogle Scholar
  31. 31.
    G. Maleshkov, D.N. Neshev, E. Petrova, A. Dreischuh, J. Opt. 13(6), 064015 (2011). http://stacks.iop.org/2040-8986/13/i=6/a=064015ADSCrossRefGoogle Scholar
  32. 32.
    V. Jukna, C. Milián, C. Xie, T. Itina, J. Dudley, F. Courvoisier, A. Couairon, Opt. Express 22(21), 25410 (2014).  https://doi.org/10.1364/OE.22.025410. http://www.opticsexpress.org/abstract.cfm?URI=oe-22-21-25410ADSCrossRefGoogle Scholar
  33. 33.
    S.N. Volkov, N.I. Koroteev, V.A. Makarov, J. Exp. Theor. Phys. 86(4), 687 (1998).  https://doi.org/10.1134/1.558527. http://dx.doi.org/10.1134/1.558527ADSCrossRefGoogle Scholar
  34. 34.
    S.N. Volkov, N.I. Koroteev, V.A. Makarov, Quant. Electron. 25(12), 1183 (1995). http://stacks.iop.org/1063-7818/25/i=12/a=A14
  35. 35.
    V.A. Makarov, I.A. Perezhogin, N.N. Potravkin, Quant. Electron. 41(2), 149 (2011). http://stacks.iop.org/1063-7818/41/i=2/a=A12
  36. 36.
  37. 37.
    V.A. Makarov, I.A. Perezhogin, Quant. Electron. 39(7), 627 (2009). http://stacks.iop.org/1063-7818/39/i=7/a=A06
  38. 38.
    K.S. Grigoriev, V.A. Makarov, I.A. Perezhogin, N.N. Potravkin, Quant. Electron. 41(11), 993 (2011). http://stacks.iop.org/1063-7818/41/i=11/a=A09
  39. 39.
    K.S. Grigoriev, V.A. Makarov, I.A. Perezhogin, Phys. Rev. A 92, 023814 (2015).  https://doi.org/10.1103/PhysRevA.92.023814. http://link.aps.org/doi/10.1103/PhysRevA.92.023814
  40. 40.
    K.S. Grigoriev, V.A. Makarov, I.A. Perezhogin, J. Opt. 18(1), 014004 (2016). http://stacks.iop.org/2040-8986/18/i=1/a=014004
  41. 41.
    K.S. Grigoriev, N.Y. Kuznetsov, E.B. Cherepetskaya, V.A. Makarov, Opt. Express 25(6), 6253 (2017).  https://doi.org/10.1364/OE.25.006253. http://www.opticsexpress.org/abstract.cfm?URI=oe-25-6-6253ADSCrossRefGoogle Scholar
  42. 42.
  43. 43.
    Y.R. Shen, The Principles of Nonlinear Optics. Wiley series in pure and applied optics (Wiley, 1984). http://books.google.ru/books?id=qYIpAQAAMAAJ
  44. 44.
  45. 45.
    Y. Shen, Nature 337, 519 (1989)ADSCrossRefGoogle Scholar
  46. 46.
    M. Beresna, P.G. Kazansky, Y. Svirko, M. Barkauskas, R. Danielius, App. Phys. Lett. 95(12), 121502 (2009).  https://doi.org/10.1063/1.3232235. http://aip.scitation.org/doi/abs/10.1063/1.3232235ADSCrossRefGoogle Scholar
  47. 47.
  48. 48.
  49. 49.
    S.A. Akhmanov, G.A. Lyakhov, V.A. Makarov, V.I. Zharikov, Optica Acta 29(10), 1359 (1982).  https://doi.org/10.1080/713820767. http://dx.doi.org/10.1080/713820767CrossRefGoogle Scholar
  50. 50.
  51. 51.
    E.J. Galvez, B.L. Rojec, V. Kumar, N.K. Viswanathan, Phys. Rev. A 89, 031801 (2014).  https://doi.org/10.1103/PhysRevA.89.031801. http://link.aps.org/doi/10.1103/PhysRevA.89.031801
  52. 52.
  53. 53.
  54. 54.
    A.A. Golubkov, V.A. Makarov, Usp.-Phys. 38(3), 325 (1995). http://stacks.iop.org/1063-7869/38/i=3/a=A06

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • K. S. Grigoriev
    • 1
    Email author
  • I. A. Perezhogin
    • 2
    • 3
  • N. N. Potravkin
    • 3
  • V. A. Makarov
    • 1
    • 3
  1. 1.Physics FacultyMoscow State UniversityMoscowRussia
  2. 2.Technological Institute for Superhard and Novel Carbon MaterialsTroitskRussia
  3. 3.International Laser CenterMoscow State UniversityMoscowRussia

Personalised recommendations