The Efficiency of Coherent Radiation from Relativistic Shocks

  • Takanobu AmanoEmail author
  • Masanori Iwamoto
  • Yosuke Matsumoto
  • Masahiro Hoshino
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)


We discuss a mechanism for intense electromagnetic wave emission at an astrophysical relativistic shock in a magnetized collisionless plasma. At the magnetized shock, the particle reflection by a compressed magnetic field of the shock produces a ring-like distribution in momentum, which gives rise to plasma instabilities. Intense and coherent high-frequency electromagnetic waves will be emitted if the synchrotron maser instability (SMI) is excited, whereas non-propagating magnetic fluctuations will be generated when the Weibel instability (WI) is the dominant mode. The problem is of great astrophysical interest because if intense radiation is emitted, the interaction with the upstream medium induces a large-amplitude electrostatic field (or Wakefield), which may play a role for the acceleration of ultra-high-energy cosmic rays. We review our recent effort to measure the efficiency of the electromagnetic wave emission using fully self-consistent, two-dimensional (2D) particle-in-cell (PIC) simulations for pair plasmas. We found that the emission efficiency in 2D was systematically lower than one dimensional (1D) PIC simulation results. However, the power remains finite even when the WI is active to generate large-amplitude magnetic fluctuations. Astrophysical implications of the present results are briefly discussed.



This work was supported in part by JSPS KAKENHI Grant Numbers 17H02966, 17H06140, 17H02877. This work used the computational resources of Cray XC30 and computers at Center for Computational Astrophysics, National Astronomical Observatory of Japan, the K computer provided by the RIKEN Advanced Institute for Computational Science, and the HPCI system provided by Information Technology Center, Nagoya University through the HPCI System Research Project (Project ID: hp150263, hp170158, hp180071).


  1. 1.
    D.B. Melrose, Rev. Mod. Plasma Phys. 1(1), 5 (2017). Scholar
  2. 2.
    M. Hoshino, J. Arons, Phys. Fluids B: Plasma Phys. 3(3), 818 (1991). Scholar
  3. 3.
    A. Langdon, J. Arons, C. Max, Phys. Rev. Lett. 61(7), 779 (1988). Scholar
  4. 4.
    M. Hoshino, J. Arons, Y.A. Gallant, A.B. Langdon, Astrophys. J. 390, 454 (1992). Scholar
  5. 5.
    Y.A. Gallant, M. Hoshino, A.B. Langdon, J. Arons, C.E. Max, Astrophys. J. 391, 73 (1992). Scholar
  6. 6.
    E.S. Weibel, Phys. Rev. Lett. 2(3), 83 (1959). Scholar
  7. 7.
    L. Sironi, A. Spitkovsky, Astrophys. J. 726(2), 75 (2011). Scholar
  8. 8.
    L. Sironi, A. Spitkovsky, J. Arons, Astrophys. J. 771(1), 54 (2013). Scholar
  9. 9.
    Y. Matsumoto, T. Amano, T.N. Kato, M. Hoshino, Phys. Rev. Lett. 119(10), 105101 (2017). Scholar
  10. 10.
    P. Chen, T. Tajima, Y. Takahashi, Phys. Rev. Lett. 89(16), 161101 (2002). Scholar
  11. 11.
    Y. Lyubarsky, Astrophys. J. 652(2), 1297 (2006). Scholar
  12. 12.
    M. Hoshino, Astrophys. J. 672(2), 940 (2008). Scholar
  13. 13.
    T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43(4), 267 (1979). Scholar
  14. 14.
    M. Iwamoto, T. Amano, M. Hoshino, Y. Matsumoto, Astrophys. J. 840(1), 52 (2017). Scholar
  15. 15.
    M. Iwamoto, T. Amano, M. Hoshino, Y. Matsumoto, Astrophys. J. 858(2), 93 (2018). Scholar
  16. 16.
    Y. Matsumoto, T. Amano, T.N. Kato, M. Hoshino, Science (New York, N.Y.) 347(6225), 974 (2015). Scholar
  17. 17.
    N. Ikeya, Y. Matsumoto, Publ. Astron. Soc. Japan 67(4), 64 (2015). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Takanobu Amano
    • 1
    Email author
  • Masanori Iwamoto
    • 1
  • Yosuke Matsumoto
    • 2
  • Masahiro Hoshino
    • 1
  1. 1.Department of Earth and Planetary ScienceUniversity of TokyoTokyoJapan
  2. 2.Department of PhysicsChiba UniversityInage-ku, ChibaJapan

Personalised recommendations