Advertisement

The Efficiency of Coherent Radiation from Relativistic Shocks

  • Takanobu AmanoEmail author
  • Masanori Iwamoto
  • Yosuke Matsumoto
  • Masahiro Hoshino
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)

Abstract

We discuss a mechanism for intense electromagnetic wave emission at an astrophysical relativistic shock in a magnetized collisionless plasma. At the magnetized shock, the particle reflection by a compressed magnetic field of the shock produces a ring-like distribution in momentum, which gives rise to plasma instabilities. Intense and coherent high-frequency electromagnetic waves will be emitted if the synchrotron maser instability (SMI) is excited, whereas non-propagating magnetic fluctuations will be generated when the Weibel instability (WI) is the dominant mode. The problem is of great astrophysical interest because if intense radiation is emitted, the interaction with the upstream medium induces a large-amplitude electrostatic field (or Wakefield), which may play a role for the acceleration of ultra-high-energy cosmic rays. We review our recent effort to measure the efficiency of the electromagnetic wave emission using fully self-consistent, two-dimensional (2D) particle-in-cell (PIC) simulations for pair plasmas. We found that the emission efficiency in 2D was systematically lower than one dimensional (1D) PIC simulation results. However, the power remains finite even when the WI is active to generate large-amplitude magnetic fluctuations. Astrophysical implications of the present results are briefly discussed.

Notes

Acknowledgements

This work was supported in part by JSPS KAKENHI Grant Numbers 17H02966, 17H06140, 17H02877. This work used the computational resources of Cray XC30 and computers at Center for Computational Astrophysics, National Astronomical Observatory of Japan, the K computer provided by the RIKEN Advanced Institute for Computational Science, and the HPCI system provided by Information Technology Center, Nagoya University through the HPCI System Research Project (Project ID: hp150263, hp170158, hp180071).

References

  1. 1.
    D.B. Melrose, Rev. Mod. Plasma Phys. 1(1), 5 (2017).  https://doi.org/10.1007/s41614-017-0007-0ADSCrossRefGoogle Scholar
  2. 2.
    M. Hoshino, J. Arons, Phys. Fluids B: Plasma Phys. 3(3), 818 (1991).  https://doi.org/10.1063/1.859877CrossRefGoogle Scholar
  3. 3.
    A. Langdon, J. Arons, C. Max, Phys. Rev. Lett. 61(7), 779 (1988).  https://doi.org/10.1103/PhysRevLett.61.779ADSCrossRefGoogle Scholar
  4. 4.
    M. Hoshino, J. Arons, Y.A. Gallant, A.B. Langdon, Astrophys. J. 390, 454 (1992).  https://doi.org/10.1086/171296ADSCrossRefGoogle Scholar
  5. 5.
    Y.A. Gallant, M. Hoshino, A.B. Langdon, J. Arons, C.E. Max, Astrophys. J. 391, 73 (1992).  https://doi.org/10.1086/171326ADSCrossRefGoogle Scholar
  6. 6.
    E.S. Weibel, Phys. Rev. Lett. 2(3), 83 (1959).  https://doi.org/10.1103/PhysRevLett.2.83ADSCrossRefGoogle Scholar
  7. 7.
    L. Sironi, A. Spitkovsky, Astrophys. J. 726(2), 75 (2011).  https://doi.org/10.1088/0004-637X/726/2/75ADSCrossRefGoogle Scholar
  8. 8.
    L. Sironi, A. Spitkovsky, J. Arons, Astrophys. J. 771(1), 54 (2013).  https://doi.org/10.1088/0004-637X/771/1/54ADSCrossRefGoogle Scholar
  9. 9.
    Y. Matsumoto, T. Amano, T.N. Kato, M. Hoshino, Phys. Rev. Lett. 119(10), 105101 (2017).  https://doi.org/10.1103/PhysRevLett.119.105101CrossRefGoogle Scholar
  10. 10.
    P. Chen, T. Tajima, Y. Takahashi, Phys. Rev. Lett. 89(16), 161101 (2002).  https://doi.org/10.1103/PhysRevLett.89.161101ADSCrossRefGoogle Scholar
  11. 11.
    Y. Lyubarsky, Astrophys. J. 652(2), 1297 (2006).  https://doi.org/10.1086/508606ADSCrossRefGoogle Scholar
  12. 12.
    M. Hoshino, Astrophys. J. 672(2), 940 (2008).  https://doi.org/10.1086/523665ADSCrossRefGoogle Scholar
  13. 13.
    T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43(4), 267 (1979).  https://doi.org/10.1103/PhysRevLett.43.267ADSCrossRefGoogle Scholar
  14. 14.
    M. Iwamoto, T. Amano, M. Hoshino, Y. Matsumoto, Astrophys. J. 840(1), 52 (2017).  https://doi.org/10.3847/1538-4357/aa6d6fADSCrossRefGoogle Scholar
  15. 15.
    M. Iwamoto, T. Amano, M. Hoshino, Y. Matsumoto, Astrophys. J. 858(2), 93 (2018).  https://doi.org/10.3847/1538-4357/aaba7aADSCrossRefGoogle Scholar
  16. 16.
    Y. Matsumoto, T. Amano, T.N. Kato, M. Hoshino, Science (New York, N.Y.) 347(6225), 974 (2015).  https://doi.org/10.1126/science.1260168ADSCrossRefGoogle Scholar
  17. 17.
    N. Ikeya, Y. Matsumoto, Publ. Astron. Soc. Japan 67(4), 64 (2015).  https://doi.org/10.1093/pasj/psv052ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Takanobu Amano
    • 1
    Email author
  • Masanori Iwamoto
    • 1
  • Yosuke Matsumoto
    • 2
  • Masahiro Hoshino
    • 1
  1. 1.Department of Earth and Planetary ScienceUniversity of TokyoTokyoJapan
  2. 2.Department of PhysicsChiba UniversityInage-ku, ChibaJapan

Personalised recommendations