Relativistic Laser Plasma Atto-Physics

  • A. A. AndreevEmail author
  • Zs. Lecz
  • S. K. Mishra
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)


Interaction of an ultrashort and ultraintense laser pulse with overdense/underdense plasmas is considered. Efficient conversion of fundamental laser radiation into sub-femtosecond XUV/X-ray radiation and its significant amplification in laser plasmas are obtained. The results of the simulations were compared with the experimental data and have shown a good coexistence.


  1. 1.
    F. Krausz, M. Ivanov, Attosecond physics. Rev. Mod. Phys. 81, 163 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    U. Teubner, P. Gibbon, High-order harmonics from laser irradiated plasma surfaces. Rev. Mod. Phys. 81, 445 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    S. Chatziathanasiou, S. Kahaly, E. Skantzakis, G. Sansone, R. Lopez-Martens, S. Haessler, K. Varju, G. Tsakiris, D. Charalambidis, P. Tzallas, Generation of attosecond light pulses from gas and solid state media. Photonics 4, 26 (2017)CrossRefGoogle Scholar
  4. 4.
    L. Plaja, R. Torres, A. Zaïr (eds.), Attosecond Physics, vol. 177 of Springer Series in Optical Sciences (Springer, Berlin, 2013)Google Scholar
  5. 5.
    R.A. Ganeev, High-Order Harmonic Generation in Laser Plasma Plumes (World Scientific, 2013)Google Scholar
  6. 6.
    G. Vampa et al., Linking high harmonics from gases and solids. Nature 522, 462 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    S. Mondal et al., Surface plasma attosecond beamlines. JOSA B 35, A93 (2018)Google Scholar
  8. 8.
    B.A. Remington, High energy density laboratory astrophysics. Plasma Phys. Controlled Fus. 47, A191 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    R.P. Drake, High-Energy-Density Physics: Fundamentals, Inertial Fusion, and Experimental Astrophysics (Springer, 2006)Google Scholar
  10. 10.
    H. Vincenti, S. Monchocé, S. Kahaly, G. Bonnaud, P. Martin, F. Quéré, Optical properties of relativistic plasma mirrors. Nat. Commun. 5, 3403 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    G.D. Tsakiris, K. Eidmann, J. Meyer-ter Vehn, F. Krausz, Route to intense single attosecond pulses. New J. Phys. 8, 19 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    P. Heissler, A. Barna, J.M. Mikhailova, G. Ma, K. Khrennikov, S. Karsch, L. Veisz, I.B. Földes, G.D. Tsakiris, Multi-μJ harmonic emission energy from laser-driven plasma. Appl. Phys. B 118, 195 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    A. Andreev, A.L. Galkin, M.P. Kalashnikov, V.V. Korobkin, M.Y. Romanovski, O.B. Shiryaev, Electrons in relativistically intense laser field: generations of zeptosecond electromagnetic pulses and electron energy spectrum. Quant. Electron. 41, 729 (2011)Google Scholar
  14. 14.
    G.A. Mourou, T. Tajima, More intense Shorter Pulse. Sci. 331(7), 41 (2011)Google Scholar
  15. 15.
    T. Baeva, S. Gordienko, A. Pukhov, Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    D. An der Brugge, A. Pukhov, Phys. Plasmas 17, 033110 (2010)Google Scholar
  17. 17.
    A. Andreev, K. Platonov, Generation of electron nano-bunches and short wavelength radiation upon reflection of a relativistic intensity laser pulse from a finite size target. Opt. Spectrosc. 114, 788 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Mikhailova, M.V. Fedorov, N. Karpowicz, P. Gibbon, V.T. Platonenko, A.M. Zheltikov, F. Krausz, Phys. Rev. Lett. 109, 245005 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Lecz, A. Andreev, Attospiral generation upon interaction of circularly polarized intense laser pulses with conelike targets. Phys. Rev. E 93, 013207 (2016)Google Scholar
  20. 20.
    P. Zhang, A.G.R. Thomas, Enhancement of high-order harmonic generation in intense laser interactions with solid density plasma by multiple reflections and harmonic amplification. Appl. Phys. Lett. 106, 131102 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Lecz, A. Andreev, Enhancement of high harmonic generation by multiple reflection of ultrashort pulses. JOSA B 35, A51 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    J. Braenzel, K. Platonov, L. Ehrentraut, A.A. Andreev, M. Schnürer, Amplification of coherent synchrotron-like high harmonic emission from ultra-thin foils in relativistic light fields. PoP 24, 080704 (2017)Google Scholar
  23. 23.
    V.M. Malkin, G. Shvets, N.J. Fisch, Phys. Rev. Lett. 82, 4448 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    V.M. Malkin, N.J. Fisch, J.S. Wurtele, Phys. Rev. E 75, 026404 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    R.M.G.M. Trines, F. Fiuza, R. Bingham, R.A. Fonseca, L.O. Silva, R.A. Cairns, P.A. Norreys, Nat. Phys. 7, 87 (2011)CrossRefGoogle Scholar
  26. 26.
    V.M. Malkin, Z. Toroker, N.J. Fisch, Phys. Plasmas 21, 093112 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    S.K. Mishra, A. Andreev, Amplification of ultra-short laser pulses via resonant backward Raman amplification in plasma. Phys. Plasmas 23, 083108 (2016)ADSCrossRefGoogle Scholar
  28. 28.
  29. 29.
    G. Vieux et al., New J. Phys. 13, 063042 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    J.D. Sadler, R. Nathvani, P. Oleśkiewicz, L.A. Ceurvorst, N. Ratan, M.F. Kasim, R.M.G.M. Trines, R. Bingham, P.A. Norreys, Compression of X-ray free electron laser pulses to attosecond duration. Sci. Rep. 5, 16755 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    S.K. Mishra, A. Andreev, Scaling for ultrashort pulse amplification in plasma via backward Raman amplification scheme operating in the short wavelength regime. J. Opt. Soc. Am. B 35, A51 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Saint Petersburg State UniversitySt. PetersburgRussia
  2. 2.ELI-ALPSSzegedHungary
  3. 3.MBIBerlinGermany
  4. 4.Physical Research Laboratory (PRL)AhmedabadIndia

Personalised recommendations