Acoustic Signal for Femtosecond Filament Plasma Grating Characterization in Air

  • Daniil E. Shipilo
  • Vladislav V. Pankratov
  • Nikolay A. Panov
  • Vladimir A. Makarov
  • Andrei B. Savel’ev
  • Olga G. KosarevaEmail author
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)


We have designed the physical model and numerical algorithm for the simulations of acoustic wave propagation from the source induced by relaxation of a femtosecond plasma grating formed by two crossing filaments in atmospheric air. The model is based on the wave equation with the wave velocity depending on the transverse temperature variation. The algorithm is based on the fine resolution (\({\approx }2\,\upmu \text {m}\)) numerical grid employed for the description of the plasma channel substructures in the course of femtosecond filamentation. We have shown that the femtosecond plasma grating emits the superposition of two acoustic signals after plasma recombination. One acoustic signal is represented by an isotropic cylindrical waveform with the characteristic spatial scale equal to the filament diameter (100–200 \(\upmu \text {m}\)) while the other has the spatial scale equal to the plasma grating period in the range \(20{-}40\,\upmu \text {m}\). This second wave propagates in the direction parallel to the axis of plasma grating modulation. Based on the simulations, we suggested the noninvasive method for the plasma grating period and the beam convergence angle detection.



This work was partially supported by the Russian Foundation for Basic Research (Grant Nos. 18-52-16020, 18-02-00954, 18-32-01000) and the National key research and development program (2018YFB0504400). D.E.S. acknowledges the program “UMNIK” of Foundation of assistance to development of small forms of enterprises in scientific-technical sphere (FASIE) (11522GU/2017), Scholarship of “Basis” Foundation, Scholarship of RF President SP-2453.2018.2, and SPIE 2018 Optics and Photonics Education Scholarship.


  1. 1.
    S.L. Chin, S.A. Hosseini, W. Liu, Q. Luo, F. Theberge, N. Akozbek, A. Becker, V.P. Kandidov, O.G. Kosareva, H. Schroeder, Can. J. Phys. 83, 863 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    V.P. Kandidov, S.A. Shlenov, O.G. Kosareva, Quant. Electron. 39, 205 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    S.L. Chin, N. Akozbek, A. Proulx, S. Petit, C.M. Bowden, Opt. Comm. 188, 181–186 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Chen, F. Théberge, O. Kosareva, N. Panov, V.P. Kandidov, S.L. Chin, Opt. Lett. 32, 3477–3479 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    W. Liu, S.A. Hosseini, Q. Luo, B. Ferland, S.L. Chin, O.G. Kosareva, N.A. Panov, V.P. Kandidov, New J. Phys. 6, 6 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    D. Uryupina, M. Kurilova, A. Mazhorova, N. Panov, R. Volkov, S. Gorgutsa, O. Kosareva, A. Savel’ev, S.L. Chin, J. Opt. Soc. Am. B 27, 667–674 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    S.A. Hosseini, Q. Luo, B. Ferland, W. Liu, N. Akozbek, G. Roy, S.L. Chin, Appl. Phys. B 77, 697–702 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Q. Luo, W. Liu, S.L. Chin, Appl. Phys. B 76, 337–340 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    J. Yu, D. Mondelain, J. Kasparian, E. Salmon, S. Geffroy, C. Favre, V. Boutou, J.-P. Wolf, Appl. Opt. 42, 7117 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    D.V. Kartashov, A.V. Kirsanov, A.M. Kiselev, A.N. Stepanov, N.N. Bochkarev, Y.N. Ponomarev, B.A. Tikhomirov, Opt. Express 14, 7552 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    J.K. Wahlstrand, N. Jhajj, E.W. Rosenthal, S. Zahedpour, H.M. Milchberg, Opt. Lett. 39, 1290–1293 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    K.P. Birch, J. Opt. Soc. Am. A 8, 647–651 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    N. Jhajj, E.W. Rosenthal, R. Birnbaum, J.K. Wahlstrand, H.M. Milchberg, Phys. Rev. X 4, 011027 (2014)Google Scholar
  15. 15.
    D.S. Uryupina, A.S. Bychkov, D.V. Pushkarev, E.V. Mitina, A.B. Savel’ev, O.G. Kosareva, N.A. Panov, A.A. Karabutov, E.B. Cherepetskaya, Laser Phys. Lett. 13, 095401 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    A.S. Bychkov, E.B. Cherepetskaya, A.A. Karabutov, V.A. Makarov, Laser Phys. Lett. 13, 085401 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    V.G. Andreev, A.A. Karabutov, S.V. Solomatin, E.V. Savateeva, V. Aleinikov, Yu.V. Zhulina, R.D. Fleming, A.A. Oraevsky, Proc. SPIE 3916, 36 (2000)Google Scholar
  18. 18.
    E.W. Rosenthal, N. Jhajj, I. Larkin, S. Zahedpour, J.K. Wahlstrand, H.M. Milchberg, Opt. Lett. 41, 3908–3911 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    G. Point, E. Thouin, A. Mysyrowicz, A. Houard, Opt. Express 24, 6271–6282 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    D.V. Pushkarev, E.V. Mitina, D.S. Uryupina, R.V. Volkov, N.A. Panov, A.A. Karabutov, O.G. Kosareva, A.B. Savel’ev, JETP Lett. 106, 561–564 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    S. Tzortzakis, B. Prade, M. Franco, A. Mysyrowicz, Opt. Commun. 181, 123 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    S. Xu, Y. Zheng, Y. Liu, W. Liu, Laser Phys. 20, 1968–1972 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    V.V. Pankratov, D.E. Shipilo, M.M. Yandulsky, N.A. Panov, O.G. Kosareva, Proc. SPIE 9990, 99900N–1 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniil E. Shipilo
    • 1
    • 2
  • Vladislav V. Pankratov
    • 1
    • 2
  • Nikolay A. Panov
    • 1
    • 2
  • Vladimir A. Makarov
    • 1
  • Andrei B. Savel’ev
    • 1
  • Olga G. Kosareva
    • 1
    • 2
    • 3
    Email author
  1. 1.Faculty of Physics and International Laser CenterLomonosov Moscow State UniversityMoscowRussia
  2. 2.Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Modern OpticsNankai UniversityTianjinChina

Personalised recommendations