New Trends in ‘Complete’ Experiment on Atomic Photoionization

  • Alexei N. Grum-GrzhimailoEmail author
  • Elena V. Gryzlova
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)


Complete experiments played a crucial role in the progress of the physics of elementary atomic processes over decades, providing most detailed information about the dynamics of the reactions. The overview of recent developments on complete experiments in atomic photoionization is presented. The advent of free-electron lasers operating in the XUV significantly increased the potential of these experiments. Unprecedented intensity of the XUV radiation concentrated in femtosecond pulses with variable energy and polarization opens the door to new type of complete experiments, which are now becoming realistic: on the two-colour above threshold ionization, on ionization by the fundamental frequency in the XUV and its second harmonic, on photoionization of positive ions, on non-dipole contribution in photoionization.



We like to acknowledge many colleagues, experimentalists and theoreticians, for fruitful discussions on the topic of the overview and collaboration during last few years, especially K. Bartschat, S. M. Burkov, P. Carpeggiani, N. Douguet, G. Hartmann, M. Ilchen, N. M. Kabachnik, A. K. Kazansky, T. Mazza, M. Meyer, R. Moshammer, K. C. Prince, A. Rudenko, G. Sansone, E. I. Staroselskaya, S. I. Strakhova, K. Ueda, J. Viefhaus, and many others. ANG gratefully acknowledges kind hospitality of the European XFEL. EVG acknowledges financial support from the Basis foundation via the “Junior Leader” program.


  1. 1.
    N. Andersen, K. Bartschat, Polarization, Alignment, and Orientation in Atomic Collisions (Springer, 2017)Google Scholar
  2. 2.
    V.V. Balashov, A.N. Grum-Grzhimailo, N.M. Kabachnik, Polarization and Correlation Phenomena in Atomic Collisions. A Practical Theory Course (Kluwer Academic/Plenum Publishers, 2000)Google Scholar
  3. 3.
    U. Becker, Complete photoionisation experiments. J. Electr. Spectrosc. Rel. Phenom. 96, 105–115 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    U. Becker, A. Crowe (eds.), Complete Scattering Experiments (Kluwer Academic/Plenum Publishers, 2001)Google Scholar
  5. 5.
    B. Bederson, The ‘Perfect’ scattering experiment. I. Comm. Atom. Mol. Phys. 1, 41–45 (1969)Google Scholar
  6. 6.
    H.-J. Beyer, J.B. West, K.J. Ross, K. Ueda, N.M. Kabachnik, H. Hamdy, H. Kleinpoppen, A new approach to the complete photoionization experiment, by means of a coincidence measurement between autoionized electrons and polarized fluorescent photons, in the region of the 3p3d resonance in calcium. J. Phys. B: At. Mol. Opt. Phys. 28, L47–L52 (1995)CrossRefGoogle Scholar
  7. 7.
    S.M. Bilen’kii, L.I. Lapidus, L.D. Puzikov, R.M. Ryndin, On finding the matrix of the \({a + a}\rightarrow ~{b + b^{\prime }}\) reaction. J. Exptl. Theoret. Phys. (U.S.S.R.) 35, 959–961 (1958), Soviet Phys. JETP 8, 669–670 (1959)Google Scholar
  8. 8.
    P. Bolognesi, A. De Fanis, M. Coreno, L. Avaldi, Complete characterization of the Ar 2p\(_{3/2}\) photoionization via Auger-electron photoelectron coincidence experiments. Phys. Rev. A 70, 022701(1)–022701(5) (2004)Google Scholar
  9. 9.
    M. Braune, G. Hartmann, M. Ilchen, A. Knie, T. Lischke, A. Reinköster, A. Meissner, S. Deinert, L. Glaser, O. Al-Dossary, A. Ehresmann, A.S. Kheifets, J. Viefhaus, Electron angular distributions of noble gases in sequential two-photon double ionization. J. Mod. Optics 63, 324–333 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    C.D. Caldwell, R.N. Zare, Alignment of Cd atoms by photoionization. Phys. Rev. A 16, 255–262 (1977)ADSCrossRefGoogle Scholar
  11. 11.
    N.A. Cherepkov, Spin polarization of photoelectrons ejected from unpolarized atoms. J. Phys. B: At. Mol. Phys. 12, 1279–1296 (1979)ADSCrossRefGoogle Scholar
  12. 12.
    N.A. Cherepkov, G. Raseev, J. Adachi, Y. Hikosaka, K. Ito, S. Motoki, M. Sano, K. Soejima, A. Yagishita, K-shell photoionization of CO: II. Determination of dipole matrix elements and phase differences. J. Phys. B: At. Mol. Opt. Phys. 33, 4213–4236 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    J. Colgan, M.S. Pindzola, Fine structure continuum cross section ratios in the two-photon ionization of rubidium using elliptically polarized light. Phys. Rev. Lett. 86, 1998–2001 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    J.W. Cooper, Photoelectron-angular-distribution parameters for rare-gas atoms. Phys. Rev. A 47, 1841–1851 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    J.W. Cooper, R.N. Zare, Angular distribution of photoelectrons. J. Chem. Phys. 48, 942–943 (1968)ADSCrossRefGoogle Scholar
  16. 16.
    J.W. Cooper, R.N. Zare: In S. Geltman, K.T. Mahanthappa, W.E. Britten (eds.), Lectures in Theoretical Physics, vol. XI-C (Gordon and Breach, New York, 1969), p. 317Google Scholar
  17. 17.
    A. Dodhy, R.N. Compton, J.A.D. Stockdale, Photoelectron angular distributions for near-threshold two-photon ionization of cesium and rubidium atoms. Phys. Rev. Lett. 54, 422–425 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    N. Douguet, A.N. Grum-Grzhimailo, E.V. Gryzlova, E.I. Staroselskaya, J. Venzke, K. Bartschat, Photoelectron angular distributions in bichromatic atomic ionization induced by circularly polarized VUV femtosecond pulses. Phys. Rev. A 93, 033402(1)–033402(10) (2016)Google Scholar
  19. 19.
    J.A. Duncanson Jr., M.P. Strand, A. Lindgard, R.S. Berry, Angular distribution of electrons from resonant two-photon ionization of sodium. Phys. Rev. Lett. 37, 987–990 (1976)ADSCrossRefGoogle Scholar
  20. 20.
    U. Fano, Propensity rules: an analytical approach. Phys. Rev. A 32, 617–618 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    S. Flügge, W. Mehlhorn, V. Schmidt, Angular distribution of Auger electrons following photoionization. Phys. Rev. Lett. 29, 7–9 (1972)ADSCrossRefGoogle Scholar
  22. 22.
    S. Fritzsche, A.N. Grum-Grzhimailo, E.V. Gryzlova, N.M. Kabachnik, Angular distributions and angular correlations in sequential two-photon double ionization of atoms. J. Phys. B: At. Mol. Opt. Phys. 41, 165601(1)–165601(12) (2008)ADSCrossRefGoogle Scholar
  23. 23.
    O. Geßner, Y. Hikosaka, B. Zimmermann, A. Hempelmann, R.R. Lucchese, J.H.D. Eland, P.-M. Guyon, U. Becker, \({4}{\sigma }^{-1}\) Inner valence photoionization dynamics of NO derived from photoelectron-photoion angular correlations. Phys. Rev. Lett. 88, 193002(1)–193002(4) (2002)Google Scholar
  24. 24.
    L. Giannessi, E. Allaria, K.C. Prince, C. Callegari, G. Sansone, K. Ueda, T. Morishita, C.N. Liu, A.N. Grum-Grzhimailo, E.V. Gryzlova, N. Douguet, K. Bartschat, Coherent control schemes for the photoionization of neon and helium in the Extreme Ultraviolet spectral region. Sci. Rep. 8, 7774(1)–7774(12) (2018)Google Scholar
  25. 25.
    K. Godehusen, P. Zimmermann, A. Verweyen, A. von dem Borne, P.H. Wernet, B. Sonntag, A complete photoionization experiment with polarized atoms using magnetic dichroism and phase tilt measurements. Phys. Rev. A 58, R3371–R3374 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    A.N. Grum-Grzhimailo, Non-dipole effects in magnetic dichroism in atomic photoionization. J. Phys. B At. Mol. Opt. Phys. 34, L359–L365 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    A.N. Grum-Grzhimailo, A. Dorn, W. Mehlhorn, On complete experiments for Auger decay. Comm. Atom. Mol. Phys. Comm. Mod. Phys. D 1, 29–39 (1999)Google Scholar
  28. 28.
    A.N. Grum-Grzhimailo, E.V. Gryzlova, M. Meyer, Non-dipole effects in the angular distribution of photoelectrons in sequential two-photon atomic double ionization. J. Phys. B At. Mol. Opt. Phys. 45, 215602(1)–215602(9) (2012)ADSCrossRefGoogle Scholar
  29. 29.
    A.N. Grum-Grzhimailo, E.V. Gryzlova, M. Meyer, Towards complete photoionization experiments beyond the dipole approximation, in Book of abstracts, IWP-RIXS-2017 International Workshop on Photoionization & Resonant Inelastic X-ray Scattering (Aussois, France, 2017), p. 26Google Scholar
  30. 30.
    A.N. Grum-Grzhimailo, E.V. Gryzlova, S. Fritzsche, N.M. Kabachnik, Photoelectron angular distributions and correlations in sequential double and triple atomic ionization by free electron lasers. J. Mod. Optics 63, 334–357 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    A.N. Grum-Grzhimailo, E.V. Gryzlova, E.I. Staroselskaya, J. Venzke, K. Bartschat, Interfering one-photon and two-photon ionization by femtosecond VUV pulses in the region of an intermediate resonance. Phys. Rev. A 91, 063418(1)–063418(9) (2015)Google Scholar
  32. 32.
    E.V. Gryzlova, A.N. Grum-Grzhimailo, Chapter Effects of hyperfine interaction in atomic photoionization, (in this book)Google Scholar
  33. 33.
    E.V. Gryzlova, A.N. Grum-Grzhimailo, E.I. Kuzmina, S.I. Strakhova, Sequential two-photon double ionization of noble gases by circularly polarized XUV radiation. J. Phys. B: At. Mol. Opt. Phys. 47, 195601(1)–195601(11) (2014)ADSCrossRefGoogle Scholar
  34. 34.
    E.V. Gryzlova, A.N. Grum-Grzhimailo, E.I. Staroselskaya, S.I. Strakhova, Similarity between the angular distributions of the first- and second-step electrons in sequential two-photon atomic double ionization. J. Electr. Spectrosc. Rel. Phenom. 204, 277–283 (2015)CrossRefGoogle Scholar
  35. 35.
    E.V. Gryzlova, A.N. Grum-Grzhimailo, E.I. Staroselskaya, N. Douguet, K. Bartschat, Quantum coherent control of the photoelectron angular distribution in bichromatic-field ionization of atomic neon. Phys. Rev. A 97, 013420(1)–013420(9) (2018)Google Scholar
  36. 36.
    R. Guillemin, O. Hemmers, D.W. Lindle, S.T. Manson, Experimental investigation of nondipole effects in photoemission at the advanced light source. Rad. Phys. Chem. 75, 2258–2274 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    L.H. Haber, B. Doughty, S.R. Leone, Continuum phase shifts and partial cross sections for photoionization from excited states of atomic helium measured by high-order harmonic optical pump-probe velocity map imaging. Phys. Rev. A 79, 031401(R1)–031401(R4) (2009)Google Scholar
  38. 38.
    G. Hartmann, M. Ilchen, A. Achner, A. Beckmann, C. Callegari, R. Cucini, A. de Fanis, E. Ferrari, P. Finetti, L. Glaser, A.N. Grum-Grzhimailo, E.V. Gryzlova, J. Buck, A. Knie, A. Lindahl, T. Mazza, M. Meyer, E. Roussel, F. Scholz, I. Shevchuk, J. Seltmann, J. Viefhaus, P. Walter, M. Zagrando, Observation of strong non-dipole effects in sequential multi-photon ionization using VUV FEL radiation, in International Conference on Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces (MPS-2016), Book of Abstracts (Moscow, Russia 23–26 Aug 2016), p. 19Google Scholar
  39. 39.
    A. Hausmann, B. Kämmerling, H. Kossmann, V. Schmidt, New approach for a perfect experiment: 2p photoionization in atomic magnesium. Phys. Rev. Lett. 61, 2669–2672 (1988)ADSCrossRefGoogle Scholar
  40. 40.
    C. Heckenkamp, F. Schäfers, G. Schönhense, U. Heinzmann, Experimental characterization of the Xe 5p photoionization by angle-and spin-resolved photoelectron spectroscopy. Z. Phys. D 2, 257–274 (1986)ADSCrossRefGoogle Scholar
  41. 41.
    U. Heinzmann, Experimental determination of the phase differences of continuum wavefunctions describing the photoionisation process of xenon atoms: I. Measurements of the spin polarisations of photoelectrons and their comparison with theoretical results. J. Phys. B: At. Mol. Phys. 13, 4353–4366 (1980)ADSCrossRefGoogle Scholar
  42. 42.
    U. Heinzmann, Experimental determination of the phase differences of continuum wavefunctions describing the photoionisation process of xenon atoms: II. Evaluation of the matrix elements and the phase differences and their comparison with data in the discrete spectral range in application of the multichannel quantum defect theory. J. Phys. B: At. Mol. Phys. 13, 4367–4381 (1980)ADSCrossRefGoogle Scholar
  43. 43.
    O. Hemmers, R. Guillemin, D.W. Lindle, Nondipole effects in soft X-ray photoemission. Rad. Phys. Chem. 70, 123–147 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    U. Hergenhahn, G. Snell, M. Drescher, B. Schmidtke, N. Müller, U. Heinzmann, M. Wiedenhöft, U. Becker, Dynamically induced spin polarization of resonant Auger electrons. Phys. Rev. Lett. 82, 5020–5023 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    V.L. Jacobs, Theory of atomic photoionization measurements. J. Phys. B: At. Mol. Phys. 5, 2257–2271 (1972)ADSCrossRefGoogle Scholar
  46. 46.
    N.M. Kabachnik, I.P. Sazhina, On the problem of a complete experimental characterisation of Auger decay. J. Phys. B: At. Mol. Opt. Phys. 23, L353–L357 (1990)ADSCrossRefGoogle Scholar
  47. 47.
    B. Kämmerling, V. Schmidt, Complete fragmentation pattern for two-step double photoionization in xenon. Phys. Rev. Lett. 67, 1848–1851 (1991)ADSCrossRefGoogle Scholar
  48. 48.
    J. Kessler, The “Perfect” photoionization experiment. Comm. Atom. Mol. Phys. 10, 47–55 (1981)Google Scholar
  49. 49.
    H. Klar, H. Kleinpoppen, Angular distribution of photoelectrons from polarised atoms exposed to polarised radiation. J. Phys. B: At. Mol. Opt. Phys. 15, 933–950 (1982)ADSCrossRefGoogle Scholar
  50. 50.
    H. Kleinpoppen, Analysis of scattering amplitudes in polarized-electron-atom collisions I. Elastic scattering on one-electron atoms and the excitation process \({{}^2{\rm S}_{1/2}}\rightarrow ^{2}\!\!{P}_{1/2,3/2}\). Phys. Rev. A 3, 2015–2027 (1971)ADSCrossRefGoogle Scholar
  51. 51.
    H. Kleinpoppen, B. Lohmann, A.N. Grum-Grzhimailo, Perfect/Complete Scattering Experiments. Probing Quantum Mechanics on Atomic and Molecular Collisions and Coincidences (Springer, 2013)Google Scholar
  52. 52.
    K.J. Kollath, Theory for laser photoionisation of excited atoms: \(n^2\!P_{1/2,3/2}\) states of Cs. J. Phys. B: Atom. Mol. Phys. 13, 2901–2919 (1980)Google Scholar
  53. 53.
    A. Kupliauskienė, N. Rakštikas, V. Tutlis, Polarization studies in the photoionization of atoms using a graphical technique. J. Phys. B: At. Mol. Opt. Phys. 34, 1783–1803 (2001)ADSCrossRefGoogle Scholar
  54. 54.
    H. Lörch, J.M. Bizau, N. Scherer, S. Diehl, D. Cubaynes, O. Zerouni, F.J. Wuilleumier, V. Schmidt, W.R. Johnson, Complete description of 3p photoionization in calcium. J. Phys. B: At. Mol. Opt. Phys. 32, 2215–2226 (1999)ADSCrossRefGoogle Scholar
  55. 55.
    T. Mazza, M. Ilchen, A.J. Rafipoor, C. Callegari, P. Finetti, O. Plekan, K.C. Prince, R. Richter, A. Demidovich, C. Grazioli, L. Avaldi, P. Bolognesi, M. Coreno, P. O’Keeffe, M. Di Fraia, M. Devetta, Y. Ovcharenko, V. Lyamayev, S. Düsterer, K. Ueda, J.T. Costello, E.V. Gryzlova, S.T. Strakhova, A.N. Grum-Grzhimailo, A.V. Bozhevolnov, A.K. Kazansky, N.M. Kabachnik, M. Meyer, Angular distribution and circular dichroism in the two-colour XUV+NIR above-threshold ionization of helium. J. Mod. Optics 63, 367–382 (2016)ADSCrossRefGoogle Scholar
  56. 56.
    M. Meyer, D. Cubaynes, D. Glijer, J. Dardis, P. Hayden, P. Hough, V. Richardson, E.T. Kennedy, J.T. Costello, P. Radcliffe, S. Düsterer, A. Azima, W.B. Li, H. Redlin, J. Feldhaus, R. Taïeb, A. Maquet, A.N. Grum-Grzhimailo, E.V. Gryzlova, S.I. Strakhova, Polarization control in two-color above-threshold ionization of atomic helium. Phys. Rev. Lett. 101, 193002(1)–193002(4) (2008)Google Scholar
  57. 57.
    R. Moshammer, Y.H. Jiang, L. Foucar, A. Rudenko, Th. Ergler, C.D. Schröter, S. Lüdemann, K. Zrost, D. Fischer, J. Titze, T. Jahnke, M. Schöffler, T. Weber, R. Dörner, T.J.M. Zouros, A. Dorn, T. Ferger, K.U. Kühnel, S. Düsterer, R. Treusch, P. Radcliffe, E. Plönjes, J. Ullrich, Few-photon multiple ionization of Ne and Ar by strong free-electron-laser pulses. Phys. Rev. Lett. 98, 203001(1)–203001(4) (2007)Google Scholar
  58. 58.
    T. Nakajima, Possibility of direct determination of the quantum phase of continua utilizing the phase of lasers. Phys. Rev. A 61, 041403(R1)–041403(R4) (2000)Google Scholar
  59. 59.
    P. O’Keeffe, S. Aloïse, S. Fritzsche, B. Lohmann, U. Kleiman, M. Meyer, A.N. Grum-Grzhimailo, Resonant Auger decay of \({\rm Xe}^{\ast } {\rm 4d}_{5/2}^{-1} {\rm 6p}\): A contribution to the complete experiment from fluorescence polarization studies. Phys. Rev. A 70, 012705(1)–012705(14) (2004)Google Scholar
  60. 60.
    P. O’Keeffe, P. Bolognesi, A. Mihelič, A. Moise, R. Richter, G. Cautero, L. Stebel, R. Sergo, L. Pravica, E. Ovcharenko, P. Decleva, L. Avaldi, Photoelectron angular distributions from polarized Ne\({}^{*}\) atoms near threshold. Phys. Rev. A 82, 052522(1)–052522(11) (2010)Google Scholar
  61. 61.
    O. Plotzke, G. Prümper, B. Zimmermann, U. Becker, H. Kleinpoppen, Magnetic dichroism in the angular distribution of atomic oxygen 2p photoelectrons. Phys. Rev. Lett. 77, 2642–2645 (1996)ADSCrossRefGoogle Scholar
  62. 62.
    K.C. Prince, E. Allaria, C. Callegari, R. Cucini, G. De Ninno, S. Di Mitri, B. Diviacco, E. Ferrari, P. Finetti, D. Gauthier, L. Giannessi, N. Mahne, G. Penco, O. Plekan, L. Raimondi, P. Rebernik, E. Roussel, C. Svetina, M. Trov, M. Zangrando, M. Negro, P. Carpeggiani, M. Reduzzi, G. Sansone, A.N. Grum-Grzhimailo, E.V. Gryzlova, S.I. Strakhova, K. Bartschat, N. Douguet, J. Venzke, D. Iablonskyi, Y. Kumagai, T. Takanashi, K. Ueda, A. Fischer, M. Coreno, F. Stienkemeier, Y. Ovcharenko, T. Mazza, M. Meyer, Coherent control with a short-wavelength free-electron laser. Nat. Photonics 10, 176–179 (2016)ADSCrossRefGoogle Scholar
  63. 63.
    L.D. Puzikov, Scattering of particles of arbitrary spin. J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 947–952 (1958), Soviet Phys. JETP 7, 655–658 (1958)Google Scholar
  64. 64.
    L. Puzikov, R. Ryndin, Ia. Smorodinskii, Reconstruction of the scattering matrix of a two-nucleon system. J. Exptl. Theoret. Phys. (U.S.S.R.) 32, 592–600 (1957), Soviet Phys. JETP 5, 489–495 (1957)Google Scholar
  65. 65.
    K.L. Reid, D.H. Leahy, R.N. Zare, Complete description of molecular photoionization from circular dichroism of rotationally resolved photoelectron angular distributions. Phys. Rev. Lett. 68, 3527–3530 (1992)ADSCrossRefGoogle Scholar
  66. 66.
    K.L. Reid, Photoelectron angular distributions. Annu. Rev. Phys. Chem. 54, 397–424 (2003)ADSCrossRefGoogle Scholar
  67. 67.
    S.J. Schaphorst, Q. Qian, B. Krässig, P. van Kampen, N. Scherer, V. Schmidt, Matrix elements for 4d\(_{5/2}\) photoionization in xenon derived from coincidence electron spectrometry. J. Phys. B: At. Mol. Opt. Phys. 30, 4003–4017 (1997)ADSCrossRefGoogle Scholar
  68. 68.
    G. Schönhense, U. Heinzmann, Evidence of strong international coupling in Hg 5d photoionization by "experimental" transition matrix elements. Phys. Rev. A 29, 987–990 (1984)ADSCrossRefGoogle Scholar
  69. 69.
    P.S. Shaw, U. Arp, S.H. Southworth, Measuring nondipolar asymmetries of photoelectron angular distributions. Phys. Rev. A 54, 1463–1472 (1996)ADSCrossRefGoogle Scholar
  70. 70.
    Y.A. Smorodinsky, The complete experiment in beta-decay. Soviet Physics JETP 9, 1142–1143 (1959), J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 1606–1608 (1959)Google Scholar
  71. 71.
    G. Snell, B. Langer, M. Drescher, N. Müller, B. Zimmermann, U. Hergenhahn, J. Viefhaus, U. Heinzmann, U. Becker, Complete description of the Xe 4d photoionization by spin-resolved photoelectron and Auger spectroscopy. Phys. Rev. Lett. 82, 2480–2483 (1999)ADSCrossRefGoogle Scholar
  72. 72.
    K. Ueda, Catching and controlling electrons in action with fully coherent FEL. Invited talk at the conference WAVEFRONT: New Frontiers and Advanced Applications of 4th generation light sources to Atomic, Molecular, Optical, and Cluster Science. ICPT, Trieste, Italy/30 November—1 December 2016Google Scholar
  73. 73.
    K. Ueda, J. West, K.J. Ross, H.J. Beyer, N.M. Kabachnik, A study of the 4p-excited autoionization resonances in Sr by measurement of the angular correlation between the photoejected electrons and polarized fluorescent photons. J. Phys. B: At. Mol. Opt. Phys. 31, 4801–4812 (1998)ADSCrossRefGoogle Scholar
  74. 74.
    Z.M. Wang, D.S. Elliott, Complete measurements of two-photon ionization of atomic rubidium using elliptically polarized light. Phys. Rev. A 62, 053404(1)–053404(14) (2000)Google Scholar
  75. 75.
    Z.-M. Wang, D.S. Elliott, Determination of the phase difference between even and odd continuum wave functions in atoms through quantum interference measurements. Phys. Rev. Lett. 87, 173001(1)–173001(4) (2001)Google Scholar
  76. 76.
    J.B. West, K.J. Ross, K. Ueda, H.J. Beyer, Angular correlation measurement between the photo-excited autoionized electron and subsequent polarized fluorescent photon at an autoionization resonance of Sr. J. Phys. B: At. Mol. Opt. Phys. 31, L647–L654 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexei N. Grum-Grzhimailo
    • 1
    Email author
  • Elena V. Gryzlova
    • 1
  1. 1.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State University, Leninskie GoryMoscowRussia

Personalised recommendations