Advertisement

Separable Potentials Model for Atoms and Molecules in Strong Ultrashort Laser Pulses

  • Yu. V. Popov
  • A. GalstyanEmail author
  • B. Piraux
  • P. F. O’Mahony
  • F. Mota-Furtado
  • P. Decleva
  • O. Chuluunbaatar
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)

Abstract

In this contribution, we discuss a model based on the replacement of the potential describing the interaction of a single active electron with the nucleus or the nuclei of atoms or molecules, with a potential, separable in momentum space and consisting of several terms. Each term supports only one single electron bound state of the system. We apply this model to the description of the interaction of atomic and molecular hydrogen, hydrogen anion and water molecule with an external ultrashort laser pulse. As expected, this short range separable potential model works very well for the hydrogen negative ion due to the short range nature of it real potential. In the case of other systems, we show that, at high frequency, taking into account the long range interaction in the final state is equivalent to multiplying the ionisation probability by a constant factor independent of the laser parameters.

Notes

Acknowledgements

We are grateful to Professor A. Saenz and his group for running their code for molecular hydrogen for us to be able to compare our results with theirs. A. G. is “aspirant au Fonds de la Recherche Scientifique (F. R. S.-FNRS)”. Yu.P. thanks the Université catholique de Louvain (UCL) for financially supporting several stays at the Institute of Condensed Matter and Nanosciences of the UCL. F. M. F. and P. F. O’M. gratefully acknowledge the European network COST (Cooperation in Science and Technology) through the Action CM1204 “XUV/X-ray light and fast ions for ultrafast chemistry” (XLIC) for financing several short term scientific missions at UCL. P.D. and A.G. acknowledge COST XLIC and F. R.S-FNRS for financing two short term scientific missions (STSM) in Trieste, Italy, and participation in COST XLIC meetings. The present research benefited from computational resources made available on the Tier-1 supercomputer of the Federation Wallonie-Bruxelles funded by the Region Wallonne under the Grant No. 1117545 as well as on the supercomputer Lomonosov from Moscow State University and on the supercomputing facilities of the UCL and the Consortium des Equipements de Calcul Intensif (CECI) en Federation Wallonie-Bruxelles funded by the F.R.S.-FNRS under the convention 2.5020.11. Y.P. is grateful to the Russian Foundation for Basic Research (RFBR) for financial support under the grant No. 16-02-00049-a. O.Ch. acknowledges support from the Hulubei-Meshcheryakov program JINR-Romania.

References

  1. 1.
    E.W. Schmid, H. Zieǵelmann, The Quantum Mechanical Three- Body Problem: Vieweg Tracts in Pure and Applied Physics, vol. 2 (Elsevier, 2017)Google Scholar
  2. 2.
    N. Zh. Takibayev, Class of model problems in three-body quantum mechanics that admit exact solutions, Phys. At. Nucl. 71(3), 460–468 (2008)Google Scholar
  3. 3.
    N. Zh. Takibaev, Solution of electron equation for the ion system \(H^{+}_{2}\) (in Russian). Izv. Nats. Akad. Nauk, Ser. Fiz. Mat. 2, 80–85 (2008)Google Scholar
  4. 4.
    S. Giraud et al., Strong field atomic ionization dynamics: role of the Coulomb potential studied by means of a model. Proc. SPIE 6165, 61650D (2006)Google Scholar
  5. 5.
    H. M. Tetchou Nganso et al. On the role of the Coulomb potential in strong field atomic ionization dynamics. J. Electron Spectrosc. Relat. Phenom. 161(1–3), 178–181 (2007),  https://doi.org/10.1016/j.elspec.2006.10.006CrossRefGoogle Scholar
  6. 6.
    H.M. Tetchou Nganso et al. Ionization of atoms by strong infrared fields: solution of the time-dependent Schrödinger equation in momentum space for a model based on separable potentials. Phys. Rev. A 83(1), 013401 (2011)Google Scholar
  7. 7.
    H.M. Tetchou Nganso et al., Interaction of a model atom exposed to strong laser pulses: role of the Coulomb potential. Phys. Rev. A 87(1), 013420 (2013)Google Scholar
  8. 8.
    A. Galstyan et al., Modelling laser-atom interactions in the strong field regime. Eur. Phys. J. D 71(4), 97 (2017)Google Scholar
  9. 9.
    H. Rottke, K.H. Welge, Photoionization of the hydrogen atom near the ionization limit in strong electric fields. Phys. Rev. A 33(1), 301–311 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    H. Rottke et al., Multiphoton ionization of atomic hydrogen in intense subpicosecond laser pulses. Phys. Rev. Lett. 64(4), 404–407 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    M. Dörr et al., The energy spectrum of photoelectrons produced by multiphoton ionization of atomic hydrogen. J. Phys.B Atomic Mol. Opt. Phys. 25(12), L275–L280 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Gontier et al., Five-photon ionization of atomic hydrogen at wavelengths around the threshold for four-photon ionization. Phys. Rev. A 46(9), 5594–5599 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    H. Rottke et al., Atomic hydrogen in intense short laser pulses: a new series of photoelectron peaks from above-threshold ionization. J. Phys. B: Atomic, Mol. Opt. Phys. 26(2), L15–L22 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    H. Rottke et al., Atomic hydrogen in a strong optical radiation field. Phys. Rev. A 49(6), 4837–4851 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    G.G. Paulus et al., High-order above-threshold ionization of atomic hydrogen using intense, ultrashort laser pulses. J. Phys. B At. Mol. Opt. Phys. 29(7), L249–L256 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    M.G. Pullen et al., Experimental ionization of atomic hydrogen with fewcycle pulses. Opt. Lett. 36(18), 3660–3662 (2011).  https://doi.org/10.1364/OL.36.003660ADSCrossRefGoogle Scholar
  17. 17.
    E. Huens et al., Numerical studies of the dynamics of multiphoton processes with arbitrary field polarization: methodological considerations. Phys. Rev. A 55(3), 2132–2143 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    B. Piraux et al., Excitation of Rydberg wave packets in the tunneling regime. Phys. Rev. A 96(4), 043403 (2017)Google Scholar
  19. 19.
    T.C. Rensink et al., Model for atomic dielectric response in strong, timedependent laser fields. Phys. Rev. A 89(3), 033418 (2014)Google Scholar
  20. 20.
    T.C. Rensink, T.M. Antonsen, Strong-field ionization and gauge dependence of nonlocal potentials. Phys. Rev. A 94(6), 063407 (2016), https://doi.org/10.1103/PhysRevA.94.063407
  21. 21.
    S.V. Popruzhenko, Keldysh theory of strong field ionization: history, applications, difficulties and perspectives.J. Phys. B Atomic, Mol. Opt. Phys. 47(20), 204001 (2014)Google Scholar
  22. 22.
    A. Galstyan et al., Reformulation of the strong-field approximation for lightmatter interactions. Phys. Rev. A 93(2), 023422 (2016),  https://doi.org/10.1103/PhysRevA.93.023422
  23. 23.
    Yu. Popov et al., Strong field approximation within a Faddeev-like formalism for laser-matter interactions. Eur. Phys. J. D 71(4), 93 (2017), https://doi.org/10.1140/epjd/e2017-70708-7
  24. 24.
    R. Szmytkowski, Alternative approach to the solution of the momentum-space Schroedinger equation for bound states of the N-dimensional problem. Ann. Phys. 524(6–7), 345–352 (2012)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    H.S. Cohl, On a generalization of the generating function for Gegenbauer polynomials. Integral Transforms Spec. Funct. 24(10), 807–816 (2013),  https://doi.org/10.1080/10652469.2012.761613MathSciNetCrossRefGoogle Scholar
  26. 26.
    F.H.M. Faisal, Gauge-equivalent intense-field approximations in velocity and length gauges to all orders. Phys. Rev. A 75(6), 063412 (2007)Google Scholar
  27. 27.
    A. Galstyan et al. Ionisation of H2O by a strong ultrashort XUV pulse: a model within the single active electron approximation. Chem. Phys. 504, 22–30 (2018),  https://doi.org/10.1016/j.chemphys.2018.02.014ADSCrossRefGoogle Scholar
  28. 28.
    A. Palacios, H. Bachau, F. Martin, Excitation and ionization of molecular hydrogen by ultrashort vuv laser pulses. Phys. Rev. A 75(1), 013408 (2007)Google Scholar
  29. 29.
    J. Zanghellini et al., An MCTDHF approach to multielectron dynamics in laser fields. Laser Phys. 13(8), 1064–1068 (2003)Google Scholar
  30. 30.
    T. Kato, H. Kono, Time-dependent multiconfiguration theory for electronic dynamics of molecules in an intense laser field. Chem. Phys. Lett. 392(4–6), 533–540 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    K.L. Ishikawa, T. Sato, A review on ab initio approaches for multielectron dynamics. IEEE J. Sel. Top. Quantum Electron 21(5), 1–16 (2015)Google Scholar
  32. 32.
    N. Rohringer, A. Gordon, R. Santra, Configuration-interactionbased time-dependent orbital approach for ab initio treatment of electronic dynamics in a strong optical laser field. Phys. Rev. A 74(4), 043420 (2006)Google Scholar
  33. 33.
    S. Pabst, R. Santra, Strong-field many-body physics and the giant enhancement in the high-harmonic spectrum of xenon. Phys. Rev. Lett. 111(23) 233005 (2013)Google Scholar
  34. 34.
    H. Bachau et al., Applications of B-splines in atomic and molecular physics. Rep. Prog. Phys. 64(12), 1815–1944 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    Armin Scrinzi and Bernard Piraux, Two-electron atoms in short intense laser pulses. Phys. Rev. A 58(2), 1310–1321 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    G. Lagmago Kamta et al., Ionization of H\(^{-}\) by a strong ultrashort laser pulse. J. Phys. B Atomic Mol. Opt. Phys. 34(5), 857–868 (2001)Google Scholar
  37. 37.
    J. Purvis et al., Multiphoton ionization of H\(^{-}\) and He in intense laser fields. Phys. Rev. Lett. 71(24), 3943–3946 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    E.S. Smyth, J.S. Parker, K.T. Taylor, Numerical integration of the time-dependent Schrödinger equation for laser-driven helium. Comput. Phys. Commun. 114(1–3), 1–14 (1998),  https://doi.org/10.1016/S0010-4655(98)00083-6ADSCrossRefGoogle Scholar
  39. 39.
    E. Foumouo et al., Theory of multiphoton single and double ionization of two-electron atomic systems driven by short-wavelength electric fields: an ab initio treatment Phys. Rev. A 74(6), 063409 (2006)Google Scholar
  40. 40.
    L.A.A. Nikolopoulos, P. Lambropoulos, Time-Dependent Nonperturbative Theory of H\(^{-}\) in a Strong Laser Field. Phys. Rev. Lett. 82(19), 3771–3774 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    H.-C. Shao, F. Robicheaux , Photodetachment of H\(^{-}\) from intense, short, high-frequency pulses. Phys. Rev. A 93(5), 053414 (2016)Google Scholar
  42. 42.
    G.W.F. Drake, Second bound state for the hydrogen negative ion. Phys. Rev. Lett. 24(4), 126–127 (1970)ADSCrossRefGoogle Scholar
  43. 43.
    M.A. Kornberg, Multiphoton ionization of H\(^{-}\) at 160 nm: a study on the production of protons. Europhys. Lett. 52(2), 130–136 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    C. Blondel et al., Excess-photon absorption in a negative ion. J. Phys. B: At. Mol. Opt. Phys. 24(16), 3575–3588 (1991)ADSCrossRefGoogle Scholar
  45. 45.
    M.D. Davidson, H.G. Muller, H.B. van Linden, van den Heuvell, Experimental observation of excess-photon detachment of negative ions. Phys. Rev. Lett. 67(13), 1712–1715 (1991)ADSCrossRefGoogle Scholar
  46. 46.
    M.D. Davidson et al., Longer wavelengths require lower intensity in multiphoton detachment of negative ions. Phys. Rev. Lett. 69(24), 3459–3462 (1992)ADSCrossRefGoogle Scholar
  47. 47.
    H. Stapelfeldt et al., Excess-photon detachment in the negative gold ion. Phys. Rev. Lett. 67(13), 1731–1734 (1991)ADSCrossRefGoogle Scholar
  48. 48.
    C.R. Quick et al., Photodetachment of the H- ion. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 56 205–210 (1991),  https://doi.org/10.1016/0168-583X(91)96007-8CrossRefGoogle Scholar
  49. 49.
    R. Reichle, H. Helm, I.Y. Kiyan, Photodetachment of H\(^{-}\) in a strong infrared laser field. Phys. Rev. Lett. 87(24), 243001 (2001)Google Scholar
  50. 50.
    R. Reichle, H. Helm, I.Y. Kiyan, Detailed comparison of theory and experiment of strong-field photodetachment of the negative hydrogen ion. Phys. Rev. A 68(6), 063404 (2003)Google Scholar
  51. 51.
    Y. Yamaguchi, Two-nucleon problem when the potential is nonlocal but separable I. Phys. Rev. 95(6), 1628–1634 (1954)ADSCrossRefGoogle Scholar
  52. 52.
    J. Slater et al., Alkali negative ions. III. Multichannel photodetachment study of Cs\(^{-}\) and K\(^{-}\). Phys. Rev. A 17(1), 201–213 (1978)ADSCrossRefGoogle Scholar
  53. 53.
    A. Saenz and his group. Private Communication, (2017)Google Scholar
  54. 54.
    Y. Vanne, A. Saenz, Numerical treatment of diatomic two electron molecules using a B-spline based CI method. J. Phys. B: At. Mol. Opt. Phys. 37(20), 4101–4118 (2004)CrossRefGoogle Scholar
  55. 55.
    M. Awasthi, A. Saenz, Breakdown of the single-activeelectron approximation for one-photon ionization of the B1Su + state of H2 exposed to intense laser fields. Phys. Rev A. 81(6), 063406 (2010)Google Scholar
  56. 56.
    S. Petretti et al., Water molecules in ultrashort intense laser fields. Chem. Phys. 414, 45–52 (2013),  https://doi.org/10.1016/j.chemphys.2012.01.011ADSCrossRefGoogle Scholar
  57. 57.
    J.P. Farrell et al., Strong field ionization to multiple electronic states in water. Phys. Rev. Lett. 107(8), 083001 (2011)Google Scholar
  58. 58.
    M.W. Schmidt et al., General atomic and molecular electronic structure system. J. Comput. Chem. 14(11), 1347–1363 (1993),  https://doi.org/10.1002/jcc.540141112CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yu. V. Popov
    • 1
    • 2
  • A. Galstyan
    • 3
    Email author
  • B. Piraux
    • 3
  • P. F. O’Mahony
    • 4
  • F. Mota-Furtado
    • 4
  • P. Decleva
    • 5
  • O. Chuluunbaatar
    • 2
    • 6
  1. 1.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Joint Institute for Nuclear ResearchDubna, MoscowRussia
  3. 3.Institute of Condensed Matter and NanosciencesUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  4. 4.Department of Mathematics, Royal HollowayUniversity of LondonEghamUK
  5. 5.Dipartimento di Scienze Chimiche e FarmaceuticheUniversita’ di TriesteTriesteItaly
  6. 6.Institute of MathematicsNational University of MongoliaUlaanBaatarMongolia

Personalised recommendations