Methods for the Simulation of Coupled Electronic and Nuclear Motion in Molecules Beyond the Born-Oppenheimer Approximation

  • Erik LötstedtEmail author
  • Tsuyoshi Kato
  • Kaoru Yamanouchi
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)


We review theoretical methods which can be used for the simulation of time-dependent electronic and nuclear dynamics of gas-phase molecules beyond the Born-Oppenheimer approximation. We concentrate on methods which allow for a description of extensive electronic excitation and ionization. Particular emphasis is placed on the extended multiconfiguration time-dependent Hartree-Fock (Ex-MCTDHF) method. We provide a derivation of the equations of motion of the Ex-MCTDHF method, and discuss its advantages and disadvantages over the methods based on the Born-Huang expansion.



This work was supported by JSPS KAKENHI grants no. JP15K17805, no. JP18K05024, and no. JP15H05696.


  1. 1.
    T. Okino, Y. Furukawa, P. Liu, T. Ichikawa, R. Itakura, K. Hoshina, K. Yamanouchi, H. Nakano, Coincidence momentum imaging of ultrafast hydrogen migration in methanol and its isotopomers in intense laser fields. Chem. Phys. Lett. 423, 220 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    T. Ando, A. Shimamoto, S. Miura, K. Nakai, H. Xu, A. Iwasaki, K. Yamanouchi, Wave packet bifurcation in ultrafast hydrogen migration in CH\(_3\)OH\(^+\) by pump-probe coincidence momentum imaging with few-cycle laser pulses. Chem. Phys. Lett. 624, 78 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    M.F. Kling, C. Siedschlag, A.J. Verhoef, J.I. Khan, M. Schultze, T. Uphues, Y. Ni, M. Uiberacker, M. Drescher, F. Krausz, M.J.J. Vrakking, Control of electron localization in molecular dissociation. Science 312, 246 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    M. Kremer, B. Fischer, B. Feuerstein, V.L.B. de Jesus, V. Sharma, C. Hofrichter, A. Rudenko, U. Thumm, C.D. Schröter, R. Moshammer, J. Ullrich, Electron localization in molecular fragmentation of H\(_2\) by carrier-envelope phase stabilized laser pulses. Phys. Rev. Lett. 103, 213003 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    V. Tagliamonti, H. Chen, G.N. Gibson, Multielectron effects in charge asymmetric molecules induced by asymmetric laser fields. Phys. Rev. Lett. 110, 073002 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    X. Gong, M. Kunitski, K.J. Betsch, Q. Song, L.P.H. Schmidt, T. Jahnke, N.G. Kling, O. Herrwerth, B. Bergues, A. Senftleben, J. Ullrich, R. Moshammer, G.G. Paulus, I. Ben-Itzhak, M. Lezius, M.F. Kling, H. Zeng, R.R. Jones, J. Wu, Multielectron effects in strong-field dissociative ionization of molecules. Phys. Rev. A 89, 043429 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    J. McKenna, A.M. Sayler, B. Gaire, N.G. Johnson, K.D. Carnes, B.D. Esry, I. Ben-Itzhak, Benchmark measurements of H\(_3\)\(^+\) nonlinear dynamics in intense ultrashort laser pulses. Phys. Rev. Lett. 103, 103004 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    H. Xu, T. Okino, K. Nakai, K. Yamanouchi, S. Roither, X. Xie, D. Kartashov, M. Schöffler, A. Baltuska, M. Kitzler, Hydrogen migration and C-C bond breaking in 1,3-butadiene in intense laser fields studied by coincidence momentum imaging. Chem. Phys. Lett. 484, 119 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    S. Roither, X. Xie, D. Kartashov, L. Zhang, M. Schöffler, H. Xu, A. Iwasaki, T. Okino, K. Yamanouchi, A. Baltuska, M. Kitzler, High energy proton ejection from hydrocarbon molecules driven by highly efficient field ionization. Phys. Rev. Lett. 106, 163001 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    M. Born, R. Oppenheimer, Zur Quantentheorie der Molekeln. Ann. Phys. 389, 457 (1927)CrossRefGoogle Scholar
  11. 11.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954)zbMATHGoogle Scholar
  12. 12.
    B. Jiang, J. Li, H. Guo, Potential energy surfaces from high fidelity fitting of ab initio points: the permutation invariant polynomial—neural network approach. Int. Rev. Phys. Chem. 35, 479 (2016)CrossRefGoogle Scholar
  13. 13.
    F. Martín, J. Fernández, T. Havermeier, L. Foucar, T. Weber, K. Kreidi, M. Schöffler, L. Schmidt, T. Jahnke, O. Jagutzki, A. Czasch, E.P. Benis, T. Osipov, A.L. Landers, A. Belkacem, M.H. Prior, H. Schmidt-Böcking, C.L. Cocke, R. Dörner, Single photon-induced symmetry breaking of H\(_2\) dissociation. Science 315, 629 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    G. Sansone, F. Kelkensberg, J.F. Pérez-Torres, F. Morales, M.F. Kling, W. Siu, O. Ghafur, P. Johnsson, M. Swoboda, E. Benedetti, F. Ferrari, F. Lépine, J.L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya, A. L’Huillier, M.Y. Ivanov, M. Nisoli, F. Martín, M.J.J. Vrakking, Electron localization following attosecond molecular photoionization. Nature (London) 465, 763 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    T. Kato, K. Yamanouchi, Time-dependent multiconfiguration theory for describing molecular dynamics in diatomic-like molecules. J. Chem. Phys. 131, 164118 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    J. Zanghellini, M. Kitzler, C. Fabian, T. Brabec, A. Scrinzi, An MCTDHF Approach to multielectron dynamics in laser fields. Laser Phys. 13, 1064 (2003)Google Scholar
  17. 17.
    T. Kato, H. Kono, Time-dependent multiconfiguration theory for electronic dynamics of molecules in an intense laser field. Chem. Phys. Lett. 392, 533 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    E. Lötstedt, T. Kato, K. Yamanouchi, in Ultrafast Intense Laser Science XIII, Vol. 116 of Springer Series in Chemical Physics, ed. by K. Yamanouchi, W.T. Hill III, G.G. Paulus (Springer International Publishing, Switzerland, 2017), pp. 15–40 (in progress)Google Scholar
  19. 19.
    H.-D. Meyer, U. Manthe, L. Cederbaum, The multi-configurational time-dependent Hartree approach. Chem. Phys. Lett. 165, 73 (1990)ADSCrossRefGoogle Scholar
  20. 20.
    M. Beck, A. Jäckle, G. Worth, H.-D. Meyer, The multiconfiguration time-dependent Hartree (MCTDH) method: a highly efficient algorithm for propagating wavepackets. Phys. Rep. 324, 1 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory (Wiley, Hoboken, NJ, 2000)CrossRefGoogle Scholar
  22. 22.
    P.A.M. Dirac, Note on exchange phenomena in the Thomas atom. Math. Proc. Camb. Phil. Soc. 26, 376 (1930)ADSCrossRefGoogle Scholar
  23. 23.
    P.-O. Löwdin, P.K. Mukherjee, Some comments on the time-dependent variation principle. Chem. Phys. Lett. 14, 1 (1972)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    T. Kato, K. Yamanouchi, Protonic structure of CH\({}_{3}\)OH described by electroprotonic wave functions. Phys. Rev. A 85, 034504 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Ide, T. Kato, K. Yamanouchi, Non-Born-Oppenheimer molecular wave functions of H\(_2\) by extended multi-configuration time-dependent Hartree-Fock method. Chem. Phys. Lett. 595–596, 180 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    U. Manthe, Wavepacket dynamics and the multi-configurational time-dependent Hartree approach. J. Phys. Cond. Matter 29, 253001 (2017)ADSGoogle Scholar
  27. 27.
    V. Oriol, G. Fabien, M. Hans-Dieter, Dynamics and infrared spectroscopy of the protonated water dimer. Angew. Chem. Int. Ed. 46, 6918 (2007)CrossRefGoogle Scholar
  28. 28.
    M.D. Coutinho-Neto, A. Viel, U. Manthe, The ground state tunneling splitting of malonaldehyde: accurate full dimensional quantum dynamics calculations. J. Chem. Phys. 121, 9207 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    H. Wang, M. Thoss, Multilayer formulation of the multiconfiguration time-dependent Hartree theory. J. Chem. Phys. 119, 1289 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    U. Manthe, A multilayer multiconfigurational time-dependent Hartree approach for quantum dynamics on general potential energy surfaces. J. Chem. Phys. 128, 164116 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    T. Westermann, R. Brodbeck, A.B. Rozhenko, W. Schoeller, U. Manthe, Photodissociation of methyl iodide embedded in a host-guest complex: a full dimensional (189D) quantum dynamics study of CH\(_3\)I@resorc[4]arene. J. Chem. Phys. 135, 184102 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    C. Jhala, M. Lein, Multiconfiguration time-dependent Hartree approach for electron-nuclear correlation in strong laser fields. Phys. Rev. A 81, 063421 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    A. Hanusch, J. Rapp, M. Brics, D. Bauer, Time-dependent renormalized-natural-orbital theory applied to laser-driven H\(_2\)\(^+\). Phys. Rev. A 93, 043414 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    R. Anzaki, T. Sato, K.L. Ishikawa, A fully general time-dependent multiconfiguration self-consistent-field method for the electron-nuclear dynamics. Phys. Chem. Chem. Phys. 19, 22008 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Nest, The multi-configuration electron-nuclear dynamics method. Chem. Phys. Lett. 472, 171 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    I.S. Ulusoy, M. Nest, The multi-configuration electron-nuclear dynamics method applied to LiH. J. Chem. Phys. 136, (2012)ADSCrossRefGoogle Scholar
  37. 37.
    D.J. Haxton, K.V. Lawler, C.W. McCurdy, Multiconfiguration time-dependent Hartree-Fock treatment of electronic and nuclear dynamics in diatomic molecules. Phys. Rev. A 83, 063416 (2011)ADSCrossRefGoogle Scholar
  38. 38.
    L. Tao, C.W. McCurdy, T.N. Rescigno, Grid-based methods for diatomic quantum scattering problems: a finite-element discrete-variable representation in prolate spheroidal coordinates. Phys. Rev. A 79, 012719 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    D.J. Haxton, K.V. Lawler, C.W. McCurdy, Qualitative failure of a multiconfiguration method in prolate spheroidal coordinates in calculating dissociative photoionization of H\(_2\)\(^+\). Phys. Rev. A 91, 062502 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Erik Lötstedt
    • 1
    Email author
  • Tsuyoshi Kato
    • 1
  • Kaoru Yamanouchi
    • 1
  1. 1.Department of Chemistry, School of ScienceThe University of TokyoTokyoJapan

Personalised recommendations