Advertisement

Polarization Singularities Nucleation in the Self-focusing of an Elliptically Polarized Laser Beam in Kerr Medium and Isotropic Phase of Nematic Liquid Crystal

  • Vladimir A. MakarovEmail author
  • Kirill S. Grigoriev
  • Nikolai A. Panov
  • Olga G. Kosareva
  • Georgy M. Shishkov
Chapter
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 119)

Abstract

The possibility of C-points formation is shown in the process of the self-focusing of an originally homogeneously elliptically polarized Gaussian beam in an isotropic nonlinear medium and in isotropic phase of nematic liquid crystal, the temperature of which is close to the temperature of nematic-isotropic phase transition. In the case of axial symmetry of incident beam’s intensity profile the generation of C-lines, which have the shape of circumference, is possible in separate planes, which are perpendicular to the axis of the beam. If the axial symmetry of the incident beam’s intensity profile is broken C-lines become three-dimensional curves and there is a propagation coordinate domain, in which two pairs of C-points exist. The total topological charge of these four C-points equals zero.

Notes

Funding

The authors acknowledge financial support from the Russian Foundation for Basic Research (Grant No. 16-02-00154).

References

  1. 1.
    G.A. Askar’yan, Effects of the gradient of a strong electromagnetic beam on electrons and atoms. JETP 15, 1088 (1962)Google Scholar
  2. 2.
    S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Uspekhi 10, 609 (1968)ADSCrossRefGoogle Scholar
  3. 3.
    A.P. Sukhorukov, Thermal self-action of intense light waves. Sov. Phys. Uspekhi 13, 410 (1970)ADSCrossRefGoogle Scholar
  4. 4.
    A.A. Chaban, Self-focusing of light in the Kerr effect. JETP Lett. 5, 48 (1967)ADSGoogle Scholar
  5. 5.
    W.G. Wagner, H.A. Haus, J.H. Marburger, Large-scale self-trapping of optical beams in the paraxial ray approximation. Phys. Rev. 175, 256 (1968)ADSCrossRefGoogle Scholar
  6. 6.
    V. Nayyar, A. Kumar, Nonlinear dynamics of an elliptically polarized beam with elliptical irradiance distribution. Opt. Commun. 73, 501 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    S. Vlasov, V. Gaponov, I. Eremina, L. Piskunova, Self-focusing of wave beams with elliptical polarization. Radiophys. Quantum Electron. 21, 358 (1978)ADSCrossRefGoogle Scholar
  8. 8.
    A.A. Golubkov, V.A. Makarov, Amplitude and polarization effects in self-focusing of laser radiation in media with spatial dispersion of nonlinearity. Radiophys. Quantum Electron. 31, 737 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    A.A. Golubkov, V.A. Makarov, I.A. Perezhogin, Formation of elliptically polarized ring-shaped electric field structures on the self-focusing of light in an isotropic medium featuring a spatially disperse nonlinearity. Mosc. Univ. Phys. Bull. 64(1), 54 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    V.A. Makarov, A.A. Golubkov, I.A. Perezhogin, S.S. Savvina, Polarization transformation during beam focusing in chiral liquid. Proc. SPIE 5333, 30 (2004)Google Scholar
  11. 11.
    G.K.L. Wong, Y.R. Shen, Transient self-focusing in a NLC in the isotropic phase. Phys. Rev. Lett. 32, 527 (1974)ADSCrossRefGoogle Scholar
  12. 12.
    E.G. Hanson, Y.R. Shen, G.K.L. Wong, Experimental study of self-focusing in a liquid crystalline medium. App. Phys. 14, 65 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    N.N. Zhukov, O.P. Zaskal’ko, A.S. Zalot’ko, V.F. Kitaeva, Transformation of elliptical polarization of light wave into linear polarization in the isotropic phase of a nematic liquid crystal. JETP Lett. 52, 606 (1990)Google Scholar
  14. 14.
    S.M. Arakelyan, G.A. Vardanyan, V.A. Vysloukh, G.A. Lyakhov, V.A. Makarov, Yu.S. Chilingarian, Effect of spatial dispersion of nonlinearity on self-focusing of laser radiation in liquid crystals. Theory and numerical experiments. Radiophys. Quantum Electron. 22, 36 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    P.G. de Gennes,The physics of liquid crystals, in The International Series of Monographs on Physics (Clarendon Press, UK, 1974)Google Scholar
  16. 16.
    L.M. Blinov, Structure and Properties of Liquid Crystals (Springer, Germany, 2011)CrossRefGoogle Scholar
  17. 17.
    M.R. Dennis, K. O’Holleran, M.J. Padgett, Singular optics: optical vortices and polarization singularities. Prog. Opt. 53, 293 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    J.F. Nye, M.V. Berry, Dislocations in wave trains. Proc. R. Soc. A 336, 1605 (1974)MathSciNetCrossRefGoogle Scholar
  19. 19.
    C. Loussert, U. Delabre, E. Brasselet, Manipulating the orbital angular momentum of light at the micron scale with nematic disclinations in a liquid crystal film. Phys. Rev. Lett. 111, 037802 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    E. Brasselet, C. Loussert, Electrically controlled topological defects in liquid crystals as tunable spin-orbit encoders for photons. Opt. Lett. 36, 719 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    E. Brasselet, Tunable optical vortex arrays from a single nematic topological defect. Phys. Rev. Lett. 108, 087801 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M.G. Clerc, S. Residor1, Harnessing optical vortex lattices in nematic liquid crystals. Phys. Rev. Lett. 111, 093902 (2013)Google Scholar
  23. 23.
    J. Kobashi, H. Yoshida, M. Ozak1, Polychromatic optical vortex generation from patterned cholesteric liquid crystals. Phys. Rev. Lett. 116, 253903 (2013)Google Scholar
  24. 24.
    A.D. Kiselev, R.G. Vovk, R.I. Egorov, V.G. Chigrinov, Polarization-resolved angular patterns of nematic liquid crystal cells: topological events driven by incident light polarization. Phys. Rev. A 78, 033815 (2008)Google Scholar
  25. 25.
    A.D. Kiselev, V.G. Chigrinov, Optics of short-pitch deformed-helix ferroelectric liquid crystals: symmetries, exceptional points, and polarization-resolved angular patterns. Phys. Rev. E 90, 042504 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    A.V. Ilyenkov, A.I. Khiznyak, L.V. Kreminskaya, M.S. Soskin, M.V. Vasnetsov, Birth and evolution of wave-front dislocations in a laser beam passed through a photorefractive LiNbO3: Fe crystal. Appl. Phys. B 62, 465 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    A.V. Ilyenkov, L.V. Kreminskaya, M.S. Soskin, M.V. Vasnetsov, Birth, evolution and annihilation of phase singularities in the propagation of a laser beam passed through a self-focusing strontium barium niobate crystal. J. Nonlinear Opt. Phys. Mater. 6, 169 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    X. Lu, Z. Wu, W. Zhang, L. Chen, Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect. Sci. Rep. 4, 4865 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    N.K. Viswanathan, V. Kumar, C.T. Samlan, Electro-optically tunable topological transformation, in 12th International Conference on Fiber Optics and Photonics, OSA, p. T4C.4 (2014)Google Scholar
  30. 30.
    I. Skab, Y. Vasylkiv, I. Smaga, R. Vlokh, Spin-to-orbital momentum conversion via electro-optic Pockels effect in crystals. Phys. Rev. A 84, 043815 (2011)Google Scholar
  31. 31.
    X. Lu, L. Chen, Vortex generation and inhomogeneous Faraday rotation of a nonparaxial gaussian beam in isotropic magneto-optic crystals. Opt. Lett. 39, 3728 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    K.S. Grigoriev, V.A. Makarov, I.A. Perezhogin, Polarization singularities in a sum-frequency light beam generated by a bichromatic singular beam in the bulk of an isotropic nonlinear chiral medium. Phys. Rev. A 92, 023814 (2015)Google Scholar
  33. 33.
    K.S. Grigoriev, V.A. Makarov, I.A. Perezhogin, Formation of the lines of circular polarization in a second harmonic beam generated from the surface of an isotropic medium with nonlocal nonlinear response in the case of normal incidence. J. Opt. 18, 014004 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    S. Shier, P. Polynkin, J. Moloney, Self-focusing of femtosecond diffraction resistant vortex beams in water. Opt. Lett. 36, 3834 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    D.N. Neshev, A. Dreischuh, G. Maleshkov, M. Samoc, Y.S. Kivshar, Supercontinuum generation with optical vortices. Opt. Express 18, 18368 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    V.P. Kandidov, I.S. Golubtsov, O.G. Kosareva, Supercontinuum sources in a high-power femtosecond laserpulse propagating in liquids and gases. Quantum Electron. 34, 348 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    P.G. de Gennes, Phenomenology of short-range-order effects in the isotropic phase of nematic materials. Phys. Lett. A 30, 454 (1969)ADSCrossRefGoogle Scholar
  38. 38.
    B. Van Roie, J. Leys, K. Denolf, C. Glorieux, G. Pitsi, J. Thoen, Weakly first-order character of the nematic-isotropic phase transition in liquid crystals. Phys. Rev. E 72, 041702 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    N.A. Panov, V.A. Makarov, K.S. Grigoriev, M.S., Yatskevitch, O.G. Kosareva, Generation of polarization singularities in the self-focusing of an elliptically polarized laser beam in an isotropic Kerr medium. Phys. D 332, 73 (2016)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
     L.V. Kreminskaya, M.S. Soskin, A.I. Khizhnyak, The Gaussian lenses give birth to optical vortices in laser beams. Opt. Commun. 145, 377, (1998)ADSCrossRefGoogle Scholar
  41. 41.
    S. Subota, V. Reshetnyak, M.S. Soskin, Phase singularity birth owing to Gaussian beam self-action in nematic liquid crystal. Mol. Cryst. Liq. Cryst. 375, 481 (2002)CrossRefGoogle Scholar
  42. 42.
    V.A. Makarov, K.S. Grigoriev, G.M. Shishkov, Polarization singularities in self-focusing of an elliptically polarized laser beam in an isotropic phase of nematic liquid crystal close to the temperature of phase transition. Mol. Cryst. Liq. Cryst. 650, 23 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vladimir A. Makarov
    • 1
    • 2
    Email author
  • Kirill S. Grigoriev
    • 1
    • 2
  • Nikolai A. Panov
    • 2
  • Olga G. Kosareva
    • 1
  • Georgy M. Shishkov
    • 1
  1. 1.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.International Laser Center, Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations