Two Subbands Quantum Hall System as a Platform for Edge Mode Manipulations

  • Yonatan CohenEmail author
Part of the Springer Theses book series (Springer Theses)


It is natural to ask whether it is possible to use the edge modes of the IQHE and FQHE to create 1D integer helical and factional helical modes. The QHE edge modes are extremely robust and moreover, as discussed above, they can be manipulated to form complicated structures using standard lithographic techniques.


  1. 1.
    Haug, R.J., MacDonald, A.H., Streda, P., von Klitzing, K.: Quantized multichannel magnetotransport through a barrier in two dimensions. Phys. Rev. Lett. 61, 2797–2800 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    Nuebler, J., et al.: Quantized ν = 5/ 2 State in a two-subband quantum hall system. Phys. Rev. Lett. 108, 46804 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Liu, Y., et al.: Evolution of the 7/2 fractional quantum hall state in two-subband systems. Phys. Rev. Lett. 107, 266802 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Wen, X.G.: Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states. Phys. Rev. B 41, 12838–12844 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    MacDonald, A.H.: Edge states in the fractional-quantum-Hall-effect regime. Phys. Rev. Lett. 64, 220–223 (1990)ADSCrossRefGoogle Scholar
  6. 6.
    Johnson, M., MacDonald, A.: Composite edges in the ν = 2/3 fractional quantum Hall effect. Phys. Rev. Lett. 67, 2060–2063 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    Kane, C.L., Fisher, M.P.A., Polchinski, J.: Randomness at the edge: theory of quantum Hall transport at filling ν=2/3. Phys. Rev. Lett. 72, 4129–4132 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    Bid, A., et al.: Observation of neutral modes in the fractional quantum Hall regime. Nature 466 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Sabo, R., et al.: Edge reconstruction in fractional quantum Hall states. Nat. Phys. 13, 491–496 (2017)CrossRefGoogle Scholar
  10. 10.
    Wang, J., Meir, Y., Gefen, Y.: Edge reconstruction in the ν = 2/3 fractional quantum hall state. Phys. Rev. Lett. 111, 246803 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Protopopov, I.V., Gefen, Y., Mirlin, A.D.: Transport in a disordered ν = 2∕3 fractional quantum Hall junction. Ann. Phys. (N. Y.) 385, 287–327 (2017)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    de Chamon, C., Freed, D.E., Kivelson, S.A., Sondhi, S.L., Wen, X.G.: Two point-contact interferometer for quantum Hall systems. Phys. Rev. B 55, 2331–2343 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Law, K.T., Feldman, D.E., Gefen, Y.: Electronic Mach-Zehnder interferometer as a tool to probe fractional statistics. Phys. Rev. B 74, 45319 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Fradkin, E., Nayak, C., Tsvelik, A., Wilczek, F.: A Chern-Simons effective field theory for the Pfaffian quantum Hall state. Nucl. Phys. B 516, 704–718 (1998)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Das Sarma, S., Freedman, M., Nayak, C.: Topologically protected Qubits from a possible Non-Abelian fractional quantum Hall state. Phys. Rev. Lett. 94, 166802 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Stern, A., Halperin, B.I.: Proposed experiments to probe the Non-Abelian ν = 5/2 quantum Hall state. Phys. Rev. Lett. 96, 16802 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Ofek, N., et al.: Role of interactions in an electronic Fabry-Perot interferometer operating in the quantum Hall effect regime. Proc. Natl. Acad. Sci. U. S. A. 107, 5276–5281 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Choi, H.K., et al.: Robust electron pairing in the integer quantum hall effect regime. Nat. Commun. 6, 7435 (2015)CrossRefGoogle Scholar
  19. 19.
    Sivan, I., et al.: Observation of interaction-induced modulations of a quantum Hall liquid’s area. Nat. Commun. 7, 12184 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Braun Center for Submicron ResearchWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations