Advertisement

A eHealth System for Atrial Fibrillation Monitoring

  • Paola Pierleoni
  • Alberto Belli
  • Andrea Gentili
  • Lorenzo IncipiniEmail author
  • Lorenzo Palma
  • Simone Valenti
  • Sara Raggiunto
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 544)

Abstract

In clinical practice the ability to monitor arrhythmia episodes in elderly people is helpful to make an accurate diagnosis and choose the proper therapeutic interventions to reduce potential health risk. In this paper we propose an eHealth system to detect atrial fibrillation events as well as provide information about patient’s health status using commercial devices such as a smartphone and a wearable sensor for heart rate monitoring. Our solution consists of a smartphone application able to real time process raw data from the wearable sensor, detect critical events for the patient’s health status, and generate remote alert to medical staff. In the smartphone application a SVM-based algorithm to detect arrhythmia episodes by handling electrocardiogram signal is implemented. To test the performance of the developed eHealth system, the proposed algorithm has been evaluated using acquisitions with atrial fibrillation events. The results show a sensitivity of 94% and a specificity of 93%.

Keywords

eHealth System Atrial fibrillation detection Wearable Sensors Heart-rate monitoring 

References

  1. 1.
    Agostinelli A, Morettini M, Sbrollini A, Maranesi E, Migliorelli L, Di Nardo F, Fioretti S, Burattini L (2017) Carisma 1.0: cardiac risk self-monitoring assessment. Open Sports Sci J 10(1)CrossRefGoogle Scholar
  2. 2.
    Andreoli A, Gravina R, Giannantonio R, Pierleoni P, Fortino G (2010) SPINE-HRV: a BSN-based toolkit for heart rate variability analysis in the time-domain. Wearable and autonomous biomedical devices and systems for smart environment, pp 369–389. SpringerGoogle Scholar
  3. 3.
    Camm A, Malik M, Bigger J, Breithardt G, Cerutti S, Cohen R, Coumel P, Fallen E, Kennedy H, Kleiger R et al (1996) Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task force of the European society of cardiology and the north American society of pacing and electrophysiology. Circulation 93(5):1043–1065CrossRefGoogle Scholar
  4. 4.
    Kulmala J, Hynynen E (2011) Heart rate variability in chronic and acute stressGoogle Scholar
  5. 5.
    Lian J, Wang L, Muessig D (2011) A simple method to detect atrial fibrillation using RR intervals. Am J Cardiol 107(10):1494–1497CrossRefGoogle Scholar
  6. 6.
    Licht CM, de Geus EJ, Zitman FG, Hoogendijk WJ, van Dyck R, Penninx BW (2008) Association between major depressive disorder and heart rate variability in The Netherlands study of depression and anxiety (NESDA). Arch Gen Psychiatr 65(12):1358CrossRefGoogle Scholar
  7. 7.
    Mohebbi M, Ghassemian H (2008) Detection of atrial fibrillation episodes using SVM. In: 30th annual international conference of the IEEE engineering in medicine and biology society, EMBS 2008, pp 177–180. IEEE (2008)Google Scholar
  8. 8.
    Moody GB, Mark RG, Goldberger AL (2001) Physionet: a web-based resource for the study of physiologic signals. IEEE Eng Med Biol Mag 20(3):70–75CrossRefGoogle Scholar
  9. 9.
    Najarian K, Splinter R (2012) Biomedical signal and image processing, 2nd edn. Taylor & FrancisGoogle Scholar
  10. 10.
    Nepi D, Sbrollini A, Agostinelli A, Maranesi E, Morettini M, Di Nardo F, Fioretti S, Pierleoni P, Pernini L, Valenti S et al (2016) Validation of the heart-rate signal provided by the Zephyr BioHarness 3.0. In: Computing in cardiology conference (CinC), pp 361–364. IEEEGoogle Scholar
  11. 11.
    O’Rourke RA, Fuster V, Alexander R (2003) Hurst. Il cuore, il manuale. McGraw HillGoogle Scholar
  12. 12.
    Park J, Lee S, Jeon M (2009) Atrial fibrillation detection by heart rate variability in poincare plot. Biomed Eng Online 8(38):1–12Google Scholar
  13. 13.
    Pierleoni P, Pernini L, Belli A, Palma L (2014) An android-based heart monitoring system for the elderly and for patients with heart disease. Inte J Telemed Appl 2014:10Google Scholar
  14. 14.
    Pierleoni P, Pernini L, Belli A, Palma L (2014) Real-time apnea detection using pressure sensor and tri-axial accelerometer. In: IEEE-EMBS international conference on biomedical and health informatics (BHI), pp 513–516. IEEE (2014)Google Scholar
  15. 15.
    Pierleoni P, Pernini L, Belli A, Palma L, Valenti S, Paniccia M (2015) SVM-based fall detection method for elderly people using android low-cost smartphones. In: 2015 IEEE sensors applications symposium (SAS), pp 1–5. IEEEGoogle Scholar
  16. 16.
    Pierleoni P, Pernini L, Palma L, Belli A, Valenti S, Maurizi L, Sabbatini L, Marroni A (2016) An innovative webRTC solution for e-health services. In: 2016 IEEE 18th international conference on e-health networking, applications and services (Healthcom), pp 1–6. IEEEGoogle Scholar
  17. 17.
    Sbrollini A, Mercanti S, Agostinelli A, Morettini M, Di Nardo F, Fioretti S, Burattini L (2017) Athria: a new adaptive threshold identification algorithm for electrocardiographic p waves. Computing 44:1Google Scholar
  18. 18.
    Stewart S, Hart C, Hole D, McMurray J (2001) Population prevalence, incidence, and predictors of atrial fibrillation in the renfrew/paisley study. Heart 86(5):516–521CrossRefGoogle Scholar
  19. 19.
    Tsipouras MG, Fotiadis DI, Sideris D (2005) An arrhythmia classification system based on the RR-interval signal. Artif Intell Med 33(3):237–250CrossRefGoogle Scholar
  20. 20.
    Yang H, Lee J, Lee K, Lee Y, Kim K, Choi H, Kim D (2008) Application for the wearable heart activity monitoring system: analysis of the autonomic function of HRV. In: 30th annual international IEEE EMBS conferenceGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Paola Pierleoni
    • 1
  • Alberto Belli
    • 1
  • Andrea Gentili
    • 1
  • Lorenzo Incipini
    • 1
    Email author
  • Lorenzo Palma
    • 1
  • Simone Valenti
    • 1
  • Sara Raggiunto
    • 1
  1. 1.Department of Information Engineering (DII)Università Politecnica delle MarcheAnconaItaly

Personalised recommendations