Advertisement

Self-Expanding vs. Balloon-Expandable Devices for Transcatheter Aortic Valve Implantation

  • Denise Todaro
  • Andrea Picci
  • Corrado Tamburino
  • Marco Barbanti
Chapter

Abstract

In the last 15 years, transcatheter aortic valve implantation (TAVI) has had an impressive advancement, transforming a challenging intervention into a very standardized and streamlined procedure. The latest generation of TAVI devices have incorporated features to reduce the delivery catheter profile, facilitate deployment, and in some cases enable repositioning and retrieval capability. According to the type of deployment, current TAVI devices can be divided into the categories of balloon-expandable, self-expanding, and mechanically expandable. Despite their widespread utilization, there are still no clear indications as to which is the best device for specific anatomical situations. In this chapter we will provide a brief summary of the current TAVI technologies, we will summarize key results of trials comparing different TAVI devices, and we will present several clinical scenarios in which a specific device could be more suitable than the others.

Keywords

TAVI Aortic Prosthesis New devices Bicuspid aortic valve Evolut Sapien Portico Acurate neo Lotus 

References

  1. 1.
    Cribier A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis. Circulation. 2002;106(24):3006 LP–3008.CrossRefGoogle Scholar
  2. 2.
    Baumgartner H, et al. 2017 ESC/EACTS guidelines for the management of valvular heart disease. Eur Heart J. 2017;38(36):2739–86.CrossRefGoogle Scholar
  3. 3.
    Nishimura RA, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the management of patients with valvular heart disease. J Am Coll Cardiol. 2017;17:735–1097.Google Scholar
  4. 4.
    Barbanti M, Webb JG, Gilard M, Capodanno D. Transcatheter aortic valve implantation in 2017: state of the art. EuroIntervention. 2017;13(AA):AA11–21.CrossRefGoogle Scholar
  5. 5.
    Cribier AG. The odyssey of TAVR from concept to clinical reality. Texas Hear Inst J. 2014;41(2):125–30.CrossRefGoogle Scholar
  6. 6.
    van Gils L, et al. TAVI with current CE-marked devices: strategies for optimal sizing and valve delivery. EuroIntervention. 2016;12(Y):Y22–7.CrossRefGoogle Scholar
  7. 7.
    Binder RK, et al. Transcatheter aortic valve replacement with the SAPIEN 3. JACC Cardiovasc Interv. 2013;6(3):293–300.CrossRefGoogle Scholar
  8. 8.
    Nijhoff F, Abawi M, Agostoni P, Ramjankhan FZ, Doevendans PA, Stella PR. Transcatheter aortic valve implantation with the new balloon-expandable sapien 3 versus sapien XT valve system. Circ Cardiovasc Interv. 2015;8(6)Google Scholar
  9. 9.
    Husser O, et al. Outcomes after transcatheter aortic valve replacement using a novel balloon-expandable transcatheter heart valve: a single-center experience. JACC Cardiovasc Interv. 2015;8(14):1809–16.CrossRefGoogle Scholar
  10. 10.
    Wöhrle J, Gonska B, Rodewald C, Seeger J, Scharnbeck D, Rottbauer W. Transfemoral aortic valve implantation with the new Edwards Sapien 3 valve for treatment of severe aortic stenosis - impact of valve size in a single center experience. PLoS One. 2016;11(3):1–10.CrossRefGoogle Scholar
  11. 11.
    De Torres-Alba F, et al. Changes in the pacemaker rate after transition from Edwards SAPIEN XT to SAPIEN 3 transcatheter aortic valve implantation the critical role of valve implantation height. JACC Cardiovasc Interv. 2016;9(8):805–13.CrossRefGoogle Scholar
  12. 12.
    Reichenspurner H, et al. Self-expanding transcatheter aortic valve system for symptomatic high-risk patients with severe aortic stenosis. J Am Coll Cardiol. 2017;70(25):3127–36.CrossRefGoogle Scholar
  13. 13.
    Mack MJ, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2016;385(9986):2477–84.CrossRefGoogle Scholar
  14. 14.
    Kapadia SR, et al. 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet. 2015;385(9986):2485–91.CrossRefGoogle Scholar
  15. 15.
    Leon MB, et al. PARTNER 2: Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2016;374(17):1609–20.CrossRefGoogle Scholar
  16. 16.
    Deeb GM, et al. 3-year outcomes in high-risk patients who underwent surgical or transcatheter aortic valve replacement. J Am Coll Cardiol. 2016;67(22):2565–74.CrossRefGoogle Scholar
  17. 17.
    Søndergaard L, et al. Two-year outcomes in patients with severe aortic valve stenosis randomized to transcatheter versus surgical aortic valve replacement: the all-comers nordic aortic valve intervention randomized clinical trial. Circ Cardiovasc Interv. 2016;9(6):1–10.CrossRefGoogle Scholar
  18. 18.
    Reardon MJ, et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N Engl J Med. 2017;376(14):1321–31.CrossRefGoogle Scholar
  19. 19.
    Abdel-Wahab M, et al. Comparison of balloon-expandable vs. self-expanding valves in patients undergoing transcatheter aortic valve replacement: the CHOICE randomized clinical trial. JAMA. 2014;311(15):1503–14.CrossRefGoogle Scholar
  20. 20.
    Abdel-Wahab M, et al. 1-year outcomes after transcatheter aortic valve replacement with balloon-expandable versus self-expanding valves. J Am Coll Cardiol. 2015;46(2):791–800.CrossRefGoogle Scholar
  21. 21.
    Feldman TE, et al. Effect of mechanically expanded vs. self-expanding transcatheter aortic valve replacement on mortality and major adverse clinical events in high-risk patients with aortic stenosis. JAMA. 2018;319(1):27.CrossRefGoogle Scholar
  22. 22.
    Willson AB, et al. 3-dimensional aortic annular assessment by multidetector computed tomography predicts moderate or severe paravalvular regurgitation after transcatheter aortic valve replacement: a multicenter retrospective analysis. J Am Coll Cardiol. 2012;59(14):1287–94.CrossRefGoogle Scholar
  23. 23.
    Zamorano JL, Gonçalves A, Lang R. Imaging to select and guide transcatheter aortic valve implantation. Eur Heart J. 2014;35(24):1578–87.CrossRefGoogle Scholar
  24. 24.
    Hahn RT, et al. Recommendations for comprehensive intraprocedural echocardiographic imaging during TAVR. JACC Cardiovasc Imaging. 2015;8(3):261–87.CrossRefGoogle Scholar
  25. 25.
    La Manna A, et al. Non-contrast three-dimensional magnetic resonance imaging for pre-procedural assessment of aortic annulus dimensions in patients undergoing transcatheter aortic valve implantation. Struct Hear. 2018;0(0):1–3.Google Scholar
  26. 26.
    Barbanti M, et al. Anatomical and procedural features associated with aortic root rupture during balloon-expandable transcatheter aortic valve replacement. Circulation. 2013;128(3):244–53.CrossRefGoogle Scholar
  27. 27.
    Blanke P, et al. Prosthesis oversizing in balloon-expandable transcatheter aortic valve implantation is associated with contained rupture of the aortic root. Circ Cardiovasc Interv. 2012;5(4):540–8.CrossRefGoogle Scholar
  28. 28.
    Gurvitch R, et al. Transcatheter aortic valve implantation: lessons from the learning curve of the first 270 high-risk patients. Catheter Cardiovasc Interv. 2011;78(7):977–84.CrossRefGoogle Scholar
  29. 29.
    Jilaihawi H, et al. Cross-sectional computed tomographic assessment improves accuracy of aortic annular sizing for transcatheter aortic valve replacement and reduces the incidence of paravalvular aortic regurgitation. J Am Coll Cardiol. 2012;59(14):1275–86.CrossRefGoogle Scholar
  30. 30.
    Détaint D, et al. Determinants of significant paravalvular regurgitation after transcatheter aortic valve implantation. JACC Cardiovasc Interv. 2009;2(9):821–7.CrossRefGoogle Scholar
  31. 31.
    Barbanti M, et al. Prosthesis choice for transcatheter aortic valve replacement: improved outcomes with the adoption of a patient-specific transcatheter heart valve selection algorithm. Int J Cardiol. 2016;203:1009–10.CrossRefGoogle Scholar
  32. 32.
    Egron S, et al. Radial force: an underestimated parameter in oversizing transcatheter aortic valve replacement prostheses: in vitro analysis with five commercialized valves. ASAIO J. 2018;64(4):536–43.CrossRefGoogle Scholar
  33. 33.
    Schuhbaeck A, et al. Aortic annulus eccentricity before and after transcatheter aortic valve implantation: comparison of balloon-expandable and self-expanding prostheses. Eur Heart J. 2013;34(7):31–2.Google Scholar
  34. 34.
    Barbanti M, et al. Underexpansion and ad hoc post-dilation in selected patients undergoing balloon-expandable transcatheter aortic valve replacement. J Am Coll Cardiol. 2014;63(10):976–81.CrossRefGoogle Scholar
  35. 35.
    John D, et al. Correlation of device landing zone calcification and acute procedural success in patients undergoing transcatheter aortic valve implantations with the self-expanding CoreValve prosthesis. JACC Cardiovasc Interv. 2010;3(2):233–43.CrossRefGoogle Scholar
  36. 36.
    Tops LF, et al. Noninvasive evaluation of the aortic root with multislice computed tomography: implications for transcatheter aortic valve replacement. JACC Cardiovasc Imaging. 2008;1(3):321–30.CrossRefGoogle Scholar
  37. 37.
    Maeno Y, et al. Relationship between left ventricular outflow tract calcium and mortality following transcatheter aortic valve implantation. Am J Cardiol. 2017;120(11):2017–24.CrossRefGoogle Scholar
  38. 38.
    Ewe SH, et al. Location and severity of aortic valve calcium and implications for aortic regurgitation after transcatheter aortic valve implantation. Am J Cardiol. 2011;108(10):1470–7.CrossRefGoogle Scholar
  39. 39.
    Hansson NC, et al. The impact of calcium volume and distribution in aortic root injury related to balloon-expandable transcatheter aortic valve replacement. J Cardiovasc Comput Tomogr. 2015;9(5):382–92.CrossRefGoogle Scholar
  40. 40.
    Khalique OK, et al. Quantity and location of aortic valve complex calcification predicts severity and location of paravalvular regurgitation and frequency of post-dilation after balloon-expandable transcatheter aortic valve replacement. JACC Cardiovasc Interv. 2014;7(8):885–94.CrossRefGoogle Scholar
  41. 41.
    Almeida JG, et al. Comparison of self-expanding and balloon-expandable transcatheter aortic valves morphology and association with paravalvular regurgitation: evaluation using multidetector computed tomography. Catheter Cardiovasc Interv. 2018;92(3):533–41.CrossRefGoogle Scholar
  42. 42.
    Delgado V, Kapadia S, Schalij MJ, Schuijf JD, Tuzcu EM, Bax JJ. Transcatheter aortic valve implantation: implications of multimodality imaging in patient selection, procedural guidance, and outcomes. Heart. 2012;98(9):743–54.CrossRefGoogle Scholar
  43. 43.
    Kim WK, et al. Comparison of outcomes using balloon-expandable versus self-expanding transcatheter prostheses according to the extent of aortic valve calcification. Clin Res Cardiol. 2017;106(12):995–1004.CrossRefGoogle Scholar
  44. 44.
    Walther T, et al. Transapical aortic valve implantation: step by step. Ann Thorac Surg. 2009;87(1):276–83.CrossRefGoogle Scholar
  45. 45.
    Willson AB, et al. Computed tomography-based sizing recommendations for transcatheter aortic valve replacement with balloon-expandable valves: comparison with transesophageal echocardiography and rationale for implementation in a prospective trial. J Cardiovasc Comput Tomogr. 2012;6(6):406–14.CrossRefGoogle Scholar
  46. 46.
    Barbanti M, et al. Impact of balloon post-dilation on clinical outcomes after transcatheter aortic valve replacement with the self-expanding CoreValve prosthesis. JACC Cardiovasc Interv. 2014;7(9):1014–21.CrossRefGoogle Scholar
  47. 47.
    Kempfert J, et al. Transapical aortic valve implantation: analysis of risk factors and learning experience in 299 patients. Circulation. 2011;124(11 Suppl):S124–9.CrossRefGoogle Scholar
  48. 48.
    Pibarot P, Dumesnil JG. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009;119(7):1034–48.CrossRefGoogle Scholar
  49. 49.
    Head SJ, et al. The impact of prosthesis patient mismatch on long-term survival after aortic valve replacement: a systematic review and meta-analysis of 34 observational studies comprising 27 186 patients with 133 141 patient-years. Eur Heart J. 2012;33(12):1518–29.CrossRefGoogle Scholar
  50. 50.
    Dayan V, Vignolo G, Soca G, Paganini JJ, Brusich D, Pibarot P. Predictors and outcomes of prosthesis-patient mismatch after aortic valve replacement. JACC Cardiovasc Imaging. 2016;9(8):924–33.CrossRefGoogle Scholar
  51. 51.
    Flameng W, Herregods MC, Vercalsteren M, Herijgers P, Bogaerts K, Meuris B. Prosthesis-patient mismatch predicts structural valve degeneration in bioprosthetic heart valves. Circulation. 2010;121(19):2123–9.CrossRefGoogle Scholar
  52. 52.
    Walther T, et al. Patient prosthesis mismatch affects short- and long-term outcomes after aortic valve replacement. Eur J Cardiothorac Surg. 2006;30(1):15–9.CrossRefGoogle Scholar
  53. 53.
    Bleiziffer S, et al. Impact of patient-prosthesis mismatch on exercise capacity in patients after bioprosthetic aortic valve replacement. Heart. 2008;94(5):637–41.CrossRefGoogle Scholar
  54. 54.
    Bakhtiary F, et al. Impact of patient-prosthesis mismatch and aortic valve design on coronary flow reserve after aortic valve replacement. J Am Coll Cardiol. 2007;49(7):790–6.CrossRefGoogle Scholar
  55. 55.
    Tasca G, et al. Impact of prosthesis-patient mismatch on cardiac events and midterm mortality after aortic valve replacement in patients with pure aortic stenosis. Circulation. 2006;113(4):570–6.CrossRefGoogle Scholar
  56. 56.
    Johnston DR, et al. Long-term durability of bioprosthetic aortic valves: implications from 12,569 implants. Ann Thorac Surg. 2015;99(4):1239–47.CrossRefGoogle Scholar
  57. 57.
    Pibarot P, et al. Incidence and sequelae of prosthesis-patient mismatch in transcatheter versus surgical valve replacement in high-risk patients with severe aortic stenosis: a PARTNER trial cohort-a analysis. J Am Coll Cardiol. 2014;64(13):1323–34.CrossRefGoogle Scholar
  58. 58.
    Zorn GL, et al. Prosthesis-patient mismatch in high-risk patients with severe aortic stenosis: a randomized trial of a self-expanding prosthesis. J Thorac Cardiovasc Surg. 2016;151(4):1014–1023.e3.CrossRefGoogle Scholar
  59. 59.
    Kalavrouziotis D, et al. Transcatheter aortic valve implantation in patients with severe aortic stenosis and small aortic annulus. J Am Coll Cardiol. 2011;58(10):1016–24.CrossRefGoogle Scholar
  60. 60.
    Rogers T, et al. Choice of balloon-expandable versus self-expanding transcatheter aortic valve impacts hemodynamics differently according to aortic annular size. Am J Cardiol. 2017;119(6):900–4.CrossRefGoogle Scholar
  61. 61.
    Yashima F, et al. Transcatheter aortic valve implantation in patients with an extremely small native aortic annulus: the OCEAN-TAVI registry. Int J Cardiol. 2017;240:126–31.CrossRefGoogle Scholar
  62. 62.
    Ewe SH, et al. Hemodynamic and clinical impact of prosthesis patient mismatch after transcatheter aortic valve implantation. J Am Coll Cardiol. 2011;58(18):1910–8.CrossRefGoogle Scholar
  63. 63.
    Kukucka M, et al. Patient-prosthesis mismatch after transapical aortic valve implantation: incidence and impact on survival. J Thorac Cardiovasc Surg. 2013;145(2):391–7.CrossRefGoogle Scholar
  64. 64.
    Ribeiro HB, et al. Coronary obstruction following transcatheter aortic valve implantation: a systematic review. J Am Coll Cardiol Intv. 2013;6(5):452–61.CrossRefGoogle Scholar
  65. 65.
    Theron A, et al. Patient-prosthesis mismatch in new generation trans-catheter heart valves: a propensity score analysis. Eur Heart J Cardiovasc Imaging. 2018;19(2):225–33.CrossRefGoogle Scholar
  66. 66.
    Mauri V, et al. Short-term outcome and hemodynamic performance of next-generation self-expanding versus balloon-expandable transcatheter aortic valves in patients with small aortic annulus. Circ Cardiovasc Interv. 2017;10(10):e005013.CrossRefGoogle Scholar
  67. 67.
    Shivaraju A, et al. Overexpansion of the SAPIEN 3 transcatheter heart valve: a feasibility study. JACC Cardiovasc Interv. 2015;8(15):2041–3.CrossRefGoogle Scholar
  68. 68.
    Mathur M, Mccabe JM, Aldea G, Pal J, Don CW. Overexpansion of the 29 mm SAPIEN 3 transcatheter heart valve in patients with large aortic annuli (area > 683 mm2): a case series. Catheter Cardiovasc Interv. 2018;91(6):1149–56.CrossRefGoogle Scholar
  69. 69.
    Elmously A, Worku B, Wong SC, Salemi A. Pushing boundaries: implantation of the 34 mm Medtronic CoreValve in patients with a large aortic annulus. Catheter Cardiovasc Interv. 2018;92(7):1449–52.CrossRefGoogle Scholar
  70. 70.
    Mylotte D, et al. Transcatheter aortic valve replacement in bicuspid aortic valve disease. J Am Coll Cardiol. 2014;64(22):2330–9.CrossRefGoogle Scholar
  71. 71.
    Sievers HH, Schmidtke C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg. 2007;133(5):1226–33.CrossRefGoogle Scholar
  72. 72.
    Colombo A, Latib A. Bicuspid aortic valve: any room for TAVR? J Am Coll Cardiol. 2014;64(22):2340–2.CrossRefGoogle Scholar
  73. 73.
    Barbanti M, et al. Transcatheter aortic valve replacement with new-generation devices: a systematic review and meta-analysis. Int J Cardiol. 2017;245:83–9.CrossRefGoogle Scholar
  74. 74.
    Ando T, Briasoulis A, Holmes AA, Taub CC, Takagi H, Afonso L. Sapien 3 versus Sapien XT prosthetic valves in transcatheter aortic valve implantation: a meta-analysis. Int J Cardiol. 2016;220:472–8.CrossRefGoogle Scholar
  75. 75.
    Grube E, et al. Clinical outcomes with a repositionable self-expanding transcatheter aortic valve prosthesis: the international FORWARD study. J Am Coll Cardiol. 2017;70(7):845–53.CrossRefGoogle Scholar
  76. 76.
    Todaro D. et al. Early and mid-term outcomes of transcatheter aortic valve replacement using the new generation self-expanding Corevalve Evolut R device. 2018: 1–6Google Scholar
  77. 77.
    Forrest JK, et al. Early outcomes with the Evolut PRO repositionable self-expanding transcatheter aortic valve with pericardial wrap. JACC Cardiovasc Interv. 2018;11(2):181–91.CrossRefGoogle Scholar
  78. 78.
    Möllmann H, et al. Real-world experience using the ACURATE neo prosthesis: 30-day outcomes of 1,000 patients enrolled in the SAVI TF registry. EuroIntervention. 2018;13(15):e1764–70.CrossRefGoogle Scholar
  79. 79.
    Yoon S-H, et al. Outcomes in transcatheter aortic valve replacement for bicuspid versus tricuspid aortic valve stenosis. J Am Coll Cardiol. 2017;69(21):2579–89.CrossRefGoogle Scholar
  80. 80.
    Yoon SH, et al. Transcatheter aortic valve replacement with early- and new-generation devices in bicuspid aortic valve stenosis. J Am Coll Cardiol. 2016;68(11):1195–205.CrossRefGoogle Scholar
  81. 81.
    Perlman GY, et al. Bicuspid aortic valve stenosis: favorable early outcomes with a next-generation transcatheter heart valve in a multicenter study. JACC Cardiovasc Interv. 2016;9(8):817–24.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Denise Todaro
    • 1
  • Andrea Picci
    • 1
  • Corrado Tamburino
    • 1
  • Marco Barbanti
    • 1
  1. 1.Division of CardiologyFerrarotto Hospital, University of CataniaCataniaItaly

Personalised recommendations