Forensic Trace Recovery in Green Criminology

  • Claude-Hélène Mayer
Part of the SpringerBriefs in Criminology book series (BRIEFSCRIMINOL)


This theoretical chapter outlines firstly the general issues associated with green criminology and forensic trace recovery and secondly emphasises the seizure and maximisation of forensic potential in terms of formal identification. It addresses the issue of extrinsic and intrinsic evidence. The value of the worldwide crime forensics will be outlined. The chapter closes with a chapter summary.


  1. Baker, C. S., & Palumbi, S. R. (1994). Which whales are hunted? A molecular genetic approach to monitoring whaling. Science, 265, 1538–1539.CrossRefGoogle Scholar
  2. Bennett, E. L. (2015). Another inconvenient truth: the failure of enforcement systems to save chrismatic species. In G. Wuerthner, E. Crist, & T. Butler (Eds.), Protecting the wild: Parks and Wilderness (pp. 189–193). Washington, DC: Island Press/Center’s for Resource Economics.CrossRefGoogle Scholar
  3. Bleay, S. M., Bandey, H. L., Black, M., & Sears, V. G. (2011). The gelatin lifting process: An evaluation of its effectiveness in the recovery of latent fingerprints. Journal of Forensic Identification, 61(6), 581–606.Google Scholar
  4. Burke, T., & Bruford, M. W. (1987). DNA fingerprinting in birds. Nature, 327, 149–152.CrossRefGoogle Scholar
  5. Claridge, J. (2016, December 5). Understanding trace evidence. Retrieved from:
  6. Cooper, J. E., & Cooper, M. E. (Eds.). (2013). Wildlife forensic investigation—principles and practice. Boca Raton: CRC Press.Google Scholar
  7. Espinoza, E. O., Espinoza, J. L., Trail, P. W., & Baker, B. W. (2012). The future of wildlife forensic science. In J. E. Huffman & J. R. Wallace (Eds.), Wildlife forensics methods and applications (pp. 343–356). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
  8. FWG Forensic Working Group. (2014). Wildlife Crime. A guide to the use of forensic and specialist techniques in the investigation of wildlife crime. London: Crown. Retrieved from: Scholar
  9. Gill, P., Jeffreys, A. J., & Werrett, D. J. (1985). Forensic applications of DNA “fingerprints”. Nature, 218, 577–579.CrossRefGoogle Scholar
  10. Hall, M. (2017). Doing “green criminology”: Methodologies, research strategies and values (or lack thereof?). In M. Hall, T. Wyatt, N. South, A. Nurse, G. Potter, & J. Maher (Eds.), Greening criminology in the 21st century. Centemporary debates and future directions in the study of environmental harm (pp. 35–62). London: Taylor & Francis.Google Scholar
  11. Hamilton, M. D., & Erhart, E. M. (2012). Forensic evidence collection and cultural motives for animal harvesting. In J. E. Huffman & J. R. Wallace (Eds.), Wildlife forensics. Methods and applications (pp. 65–80). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
  12. Hammell, L., Deacon, P., & Farrugia, K. J. (2014). Chemical enhancement of soil-based marks on nonporous surfaces followed by gelatin lifting. Journal of Forensic Identification, 64(6), 583–608.Google Scholar
  13. Henson, D. W., Malpas, R. C., & D’Udine, F. A. C. (2016). Wildlife law enforcement in Sub-Saharan African protected areas. A review of best practices. Cambridge, UK: International Union for Conservation of Nature and Natural Resources.CrossRefGoogle Scholar
  14. Huffman, J. E., & Wallace, J. R. (2012). Wildlife forensics. Methods and applications. Oxford: Wiley-Blackwell.Google Scholar
  15. Jeffreys, A. J., Wilson, V., & Thein, S. L. (1985). Individual-specific fingerprints of human DNA. Nature, 316, 76–79.CrossRefGoogle Scholar
  16. Linacre, A. T., & Tobe, S. S. (2013). DNA analysis. Applications in forensic science. Chichester, West Sussex: Wiley-Blackwell.CrossRefGoogle Scholar
  17. Moore, M. K., & Kornfield, I. L. (2012). Best practices in wildlife forensic DNA. In J. E. Huffman & J. R. Wallace (Eds.), Wildlife forensics. Methods and applications (pp. 201–231). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
  18. NPIA. (2007). Footwear marks recovery manual. National Policing Improvement Agency. Retrieved from:
  19. Ogden, R., Dawnay, N., & McEwing, R. (2009). Wildlife DNA forensics—bridging the gap between conservation genetics and law enforcement. Endangered Species Research, 9, 179–195.CrossRefGoogle Scholar
  20. Shaler, R. C. (2011). Crime scene forensics: A scientific method approach. Boca Raton: CRC Press.CrossRefGoogle Scholar
  21. Smith, L., & Bond, J. (2015). Criminal justice and forensic science. A multidisciplinary introduction. London: Palgrave.CrossRefGoogle Scholar
  22. Smith, M. L. R., & Humphreys, J. (2016). The poaching paradox: Why South Africa’s “Rhino Wars” shina a harsh sportlight on security and conservation. In A. Brisman, N. South, & R. White (Eds.), Environmental crime and social conflict. Contemporary and emerging issues (Green Criminology Series) (pp. 197–220). London: Routledge.Google Scholar
  23. Sweijd, N. A., Bowie, E. C. K., Lopata, A. L., Marinaki, A. M., Harley, E. H., & Cook, P. A. (1998). A PCR technique for forensic, species-level identification of abalone tissue. Journal of Shellfish Research, 17, 889–895.Google Scholar
  24. Theeuwen, A. B. E., van Barneveld, S., Drok, J. W., Keereweer, I., Limborgh, J. C. M., Naber, W. M., et al. (1998). Enhancement of Footwear Impressions in Blood. Forensic Science International, 95(2), 133–151.CrossRefGoogle Scholar
  25. van Uhm, D. P. (2018). The social construction of the value of wildlife: A green cultural criminological perspective. Theoretical Criminology, 22(3), 384–401.CrossRefGoogle Scholar
  26. Velders, M. J. M. (1996). Fluorescing traces in blood on white gelatin lifters with Hungarian red. Presented at the 81st Educational Conference of the International Association of Identification, Greensboro, NC.Google Scholar
  27. Wasser, S. K., Clark, B., & Laurie, C. (2009). The ivory trail. Conservation, 301(1), 68–76.Google Scholar
  28. Wasser, S. K., Clark, W. J., Drori, O., Kisamo, E. S., Mailand, C., Mutayoba, B., et al. (2008). Combating the illegal trade in African elephant ivory with DNA forensics. Conservation Biology, 22(4), 1065–1071.CrossRefGoogle Scholar
  29. Wasser, S. K., Mailand, C., Booth, R., Mutayoba, B., Kisamo, E., Clark, B., et al. (2007). Using ivory to track the origin of the largest ivory seizure since the 1989 trade ban. Proceedings of the National Academy of Sciences of the United States of America, 104, 4228–4233.CrossRefGoogle Scholar
  30. Wasser, S. K., Shedlock, A. M., Comstock, K., Ostrander, E. A., Mutayoba, B., & Stephens, M. (2004). Assigning elephant DNA to geographic region of origin: applications to the ivory trade. Proceedings of the National Academy of Sciences of the United States of America, 101, 14847–14852.CrossRefGoogle Scholar
  31. Wiesner, S., Tsach, T., Belser, C., & Shor, Y. (2011). A comparative research of two lifting methods: Electrostatic lifter and gelantin lifter. Journal of Forensic Sciences, 56(1), 58–62.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Claude-Hélène Mayer
    • 1
    • 2
  1. 1.Department of Industrial Psychology and People ManagementUniversity of JohannesburgJohannesburgSouth Africa
  2. 2.Institute for Criminal Justice StudiesUniversity of PortsmouthPortsmouthUK

Personalised recommendations