Application of Heat Pipes to Fissionable Nuclear Reactor

  • Bahman Zohuri


Heat pipes are often proposed as cooling system components for small fission reactors. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. Heat pipes have been used in reactors to cool components within radiation tests; however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors.


  1. 1.
    Zohuri, B. (2016). Heat pipe design and technology: Modern applications for practical thermal management (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  2. 2.
    Nemec, P., Caja, A., & Malcho, M. (2013). Mathematical model for heat transfer limitations of heat pipe. Mathematical and Computer Modelling, 57, 126–136.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ochterbeck, J. M. (2003). Heat pipes. In Heat transfer handbook (1st ed.). Hoboken: Wiley.Google Scholar
  4. 4.
    Gaugler, R. S. (1944). Heat transfer devices. U.S. patent 2,350,348.Google Scholar
  5. 5.
    Trefethen, L. (1962). On the surface tension pumping of liquids or a possible role of the candlewick in space exploration. GE Tech. Int. Ser. No. G15-D114. Schenectady, NY: General Electric Co.Google Scholar
  6. 6.
    Grover, G. M., Cotter, T. P., & Erikson, G. F. (1964). Structures of very high thermal conductivity. Journal of Applied Physics, 218, 1190–1191.Google Scholar
  7. 7.
    Jeong, Y. S. (2016). Hybrid heat pipe based passive cooling device for spent nuclear fuel dry storage cask. Applied Thermal Engineering, 96, 277–285.CrossRefGoogle Scholar
  8. 8.
    Jeong, Y. S., Kim, K. M., Kim, I. G., & Bang, I. C. (2015). Hybrid heat pipe with control rod as passive in-core cooling system for advanced nuclear power plant. Applied Thermal Engineering, 90, 609–618.CrossRefGoogle Scholar
  9. 9.
    Deverall, J. E., & Kemme, J. E. (1965). Satellite heat pipe. U.S. Atomic Energy Commission Report LA-3278-MC. Los Alamos, NM: Los Alamos Scientific Laboratory.Google Scholar
  10. 10.
    Anderson, J. L., & Lantz, E. (1968). A nuclear thermionic space power concept using rod control and heat pipes. Nuclear Applications, 5(6), 424–436.CrossRefGoogle Scholar
  11. 11.
    Croke, E. J., & Roberts, J. J. (1968). Compact power concept features a fast reactor, heat pipes, and direct converters. Reactor and Fuel-Processing Technology, 11(4), 187–200.Google Scholar
  12. 12.
    Lubarsky, B., & Shure, L. I. (1966). Applications of power systems to specific missions. In Space Power Systems Advanced Technology Conference NASA-SP-131 (pp. 269–277). National Aeronautics and Space Administration.Google Scholar
  13. 13.
    Cotter, T. P. (1967). Heat pipe startup dynamic. In Proceedings of SAE Thermionic Conversion Specialist Conference, Palo Alto, CA.Google Scholar
  14. 14.
    Deverall, J. E., Kemme, J. E., & Florschuetz, L. W. (1970, September). Sonic limitations and startup problems of heat pipes. Los Alamos Scientific Laboratory Report No. LA-4578.Google Scholar
  15. 15.
    de Selding, P. B. (2016, July 17). SpaceX wins 5 new space station cargo missions in NASA contract estimated at $700 million. Space News.Google Scholar
  16. 16.
    Parker, M. B. (1970). Application of heat pipes to nuclear reactor engineering. Ames: Iowa State University.CrossRefGoogle Scholar
  17. 17.
    Anand, D. K. (1966). On the performance of a heat pipe. Journal of Spacecraft and Rockets, 3(5), 763–765.CrossRefGoogle Scholar
  18. 18.
    Carnesale, A., Cosgrove, J. H., & Ferrill, J. K. (1966). Operating limits of the heat pipe. U.S. Atomic Energy Report SC-M-66-623. Albuquerque, NM: Sandia Laboratories.Google Scholar
  19. 19.
    Cotter, T. P., Deverall, J., Erlckson, Q. F., Qrover, Q. M, Keddy, E. S., Kemme, J. E., & Salmi, E. W. (1965). Status report on theory and experiments on heat pipes at Los Alamos. U.S, Atomic Energy Commission Report LA-DC-7206. Los Alamos, NM: Los Alamos Scientific The Laboratory.Google Scholar
  20. 20.
    Cotter, T. P. (1965). Theory of heat pipes. U.S. Atomic Energy Commission Report LA-324o-MC. Los Alamos, NM: Los Alamos Scientific Laboratory.Google Scholar
  21. 21.
    Kemme, J. E. (1966). Heat pipe capability experiments. U.S. Atomic Energy Report LA-3585-MS. Los Alamos, NM: Los Alamos Scientific Laboratory.Google Scholar
  22. 22.
    Kemme, J. E. (1969). Heat pipe design considerations. Unpublished mimeographed paper presented at National Heat Transfer Conference, Minneapolis, Minnesota. Los Alamos, NM: Los Alamos Scientific Laboratory.Google Scholar
  23. 23.
    Kemme, J. E. (1967). High performance heat pipes. U.S. Atomic Energy Commission Report LA-DC-9027. Los Alamos, NM: Los Alamos Scientific Laboratory.Google Scholar
  24. 24.
    Cheung, H. (1968). A critical review of heat pipe theory and applications. U.S. Atomic Energy Commission Report UCRL-50453. Livermore, CA: Lawrence Radiation Laboratory, University of California.Google Scholar
  25. 25.
    Peldman, K. T., & Whiting, G. H. (1968). Applications of the heat pipe. Mechanical Engineering, 90(11), 48–53.Google Scholar
  26. 26.
    Peldman, K. T., & Whiting, G. H. (1967). The heat pipe. Mechanical Engineering, 89(2), 30–33.Google Scholar
  27. 27.
    Smith, H. P. (1962). Closed loop dynamics of nuclear rocket engines with bleed turbine drive. Nuclear Science and Engineering, 14(4), 371–379.CrossRefGoogle Scholar
  28. 28.
    Smith, H. P., & Stenning, A. H. (1961). Open loop stability and response of nuclear rocket engines. Nuclear Science and Engineering, 11(1), 76–84.CrossRefGoogle Scholar
  29. 29.
    Jansen, W., & Buckner, J. K. (1963). Starting and control characteristics of nuclear rocket engines. AIAA Journal, 1(3), 563–573.CrossRefGoogle Scholar
  30. 30.
    Mohler, R. R., & Perry, J. E. (1961). Nuclear rocket engine control. Nucleonics, 19(4), 80–84.Google Scholar
  31. 31.
    Robbins, W. H., & Finger, H. B. (1991, July). An historical perspective of the NERVA nuclear rocket engine technology program. NASA Contractor Report 187154/AIAA-91-3451. NASA Lewis Research Center, NASA.Google Scholar
  32. 32.
    Cooper, R. S. (1968). Nuclear propulsion for space vehicles. Annual Review of Nuclear Science, 18, 203–228.CrossRefGoogle Scholar
  33. 33.
    Valfells, A. (1962). Preliminary design of a power generating system using a fissile gas. Unpublished PhD thesis, Library, Iowa State University of Science and Technology, Ames.Google Scholar
  34. 34.
    Robbins, W. H. (1991). An historical perspective of the NERVA nuclear rocket engine technology program. NASA Contractor Report 187154 AIAA-91-3451.Google Scholar
  35. 35.
    Zohuri, B., & McDaniel, P. (2017). Combined cycle driven efficiency for next generation nuclear power plants: An innovative design approach (2nd ed.). New York: Springer.Google Scholar
  36. 36.
    Zohuri, B. (2016). Compact heat exchangers: Selection, application, design and evaluation. New York: Springer.Google Scholar
  37. 37.
    Zohuri, B., & McDaniel, P. (2019). Thermodynamics in nuclear power plant systems (2nd ed.). Springer.Google Scholar
  38. 38.
    UN, United Nations Committee on the Peaceful Users of Outer Space. (1981, February). Report of the Working Group of the Uses of Nuclear Power Sources in Outer Space, Annex II to the report designated as Report of the Scientific and Technical Subcommittee on the Work of the Eighteenth Session. UN Document A/AC, 105/287.Google Scholar
  39. 39.
    Ponomarev-Stepnoi, N. N., Talyzin, V. M., & Usov, V. A. (2000). Russian space nuclear power and nuclear thermal propulsion system. Nuclear News.Google Scholar
  40. 40.
    Paniagua, J., Maise, G., & Powell, J. (2008). Converting the ISS to an Earth-Moon transport system using nuclear thermal propulsion. In: Space Technology and Applications International Forum (STAIF 2008) (pp. 492–502). Albuquerque, NM: AIP.Google Scholar
  41. 41.
    Powell, J., Maise, G., Ludewig, H., & Todosow, M. (1997). Highperformance ultra-light nuclear rockets for near-earth objects interaction missions. Annals of the New York Academy of Sciences, 822, 447–467.CrossRefGoogle Scholar
  42. 42.
    Bergin, C. (2015). NASA lines up four additional CRS missions for Dragon and Cygnus. Retrieved April 19, 2015, from

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bahman Zohuri
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of New Mexico, Galaxy Advanced Engineering, Inc.AlbuquerqueUSA

Personalised recommendations