Basic Principles of Heat Pipes and History

  • Bahman Zohuri


The heat pipe is one of the remarkable achievements of thermal physics and heat transfer engineering in this century because of its unique ability to transfer heat over large distances without considerable losses. The main applications of heat pipes deal with the problems of environmental protection and energy and fuel savings. Heat pipes have emerged as an effective and established thermal solution, particularly in high heat flux applications and in situations where there is any combination of nonuniform heat loading, limited airflow over the heat-generating components, and space or weight constraints. This chapter will briefly introduce heat pipe technology and then highlight its basic applications as a passive thermal control device [1].


  1. 1.
    Zohuri, B. (2016). Heat pipe design and technology: Modern applications for practical thermal management (2nd ed.). New York: Springer.CrossRefGoogle Scholar
  2. 2.
    Gaugler, R. S. (1944, June 6). Heat transfer device. U.S. Patent 2, 350, 348.Google Scholar
  3. 3.
    Trefethen, L. (1962, February). On the surface tension pumping of liquids or a possible role of the candlewick in space exploration (G. E. Tech. Info., Ser. No. 615 D114).Google Scholar
  4. 4.
    Wyatt, T. Wyatt (Johns Hopkins/Applied Physics Lab.). Satellite Temperature Stabilization System. Early development of spacecraft heat pipes for temperature stabilization. U.S. Patent No. 3,152,774 (October 13, 1964), application was files June 11, 1963.Google Scholar
  5. 5.
    Grove, G. M., Cotter, T. P., & Erikson, G. F. (1964). Structures of very high thermal conductivity. Journal of Applied Physics, 35, 1990.CrossRefGoogle Scholar
  6. 6.
    Chi, S. W. (1976). Heat pipe theory and practice. New York: McGraw-Hill.Google Scholar
  7. 7.
    Dunn, P. D., & Reay, D. A. (1982). Heat pipes (3rd ed.). New York: Pergamon.Google Scholar
  8. 8.
    Marcus, B. D. (1971, July). Theory and design of variable conductance heat pipes: Control techniques (Research Report No. 2). NASA 13111-6027-R0-00.Google Scholar
  9. 9.
    Bennett, G. A. (1977, September 1). Conceptual design of a heat pipe radiator. LA-6939-MS Technical Report. Los Alamos Scientific Lab., NM, USA.Google Scholar
  10. 10.
    Gerasimov, Y. F., Maidanik, Y. F., & Schegolev, G. T. (1975). Low-temperature heat pipes with separated channels for vapor and liquid. Engineering Physics Journal, 28(6), 957–960. (in Russian).CrossRefGoogle Scholar
  11. 11.
    Watanabe, K., Kimura, A., Kawabata, K., Yanagida, T., & Yamauchi, M. (2001). Development of a variable-conductance heat-pipe for a sodium-sulfur (NAS) battery. Furukawa Review, No. 20.Google Scholar
  12. 12.
    Peterson, G. P. (1994). An introduction to heat pipes: Modeling, testing, and applications (pp. 175–210). New York: Wiley.Google Scholar
  13. 13.
    Garner, S. D., P. E., Thermacore Inc.Google Scholar
  14. 14.
    Brennan, P. J., & Kroliczek, E. J. (1979). Heat pipe design handbook. Towson, MD: B & K Engineering.Google Scholar
  15. 15.
    Kemme, J. E. (1969, August 1). Heat pipe design considerations. Los Alamos Scientific Laboratory report LA-4221-MS.Google Scholar
  16. 16.
    MIL-STD-1522A (USAF). (1984, May). Military standard general requirements for safe design and operation of pressurized missile and space systems.Google Scholar
  17. 17.
    Woloshun, K. A., Merrigan, M. A., & Best, E. D. HTPIPE: A steady-state heat pipe analysis program: A user’s manual.Google Scholar
  18. 18.
    Faghri, A. Temperature regulation system for the human body using heat pipes. US patent 5269369.Google Scholar
  19. 19.
    Grover, G. M., Cotter, T. P., & Erickson, G. F. (1964). Structures of very high thermal conductance. Journal of Applied Physics, 35(6), 1990–1991.CrossRefGoogle Scholar
  20. 20.
    Ranken, W. A., & Kemme, J. E. (1965). Survey of Los Alamos and EURATOM heat pipe investigations. In Proceedings of the IEEE Thermionic Conversion Specialist Conference, San Diego, California, October 1965. Los Alamos Scientific Laboratory, report LA-DC-7555.Google Scholar
  21. 21.
    Kernme, J. E. (1966). Heat pipe capability experiments. In Proceedings of Joint AEC Sandia Laboratories report SC-M-66-623, 1, October 1966. Expanded version of this paper, Los Alamos Scientific Laboratory report LA-3585-MS (August 1966), also as LA-DC-7938. Revised version of LA-3583-MS, Proc. EEE Thermionic Conversion Specialist Conference, Houston, Texas, (November 1966).Google Scholar
  22. 22.
    Grover, G. M., Bohdansky, J., & Busse, C. A. (1965). The use of a new heat removal system in space thermionic power supplies. European Atomic Energy Community—EURATOM report EUR 2229.e.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bahman Zohuri
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of New Mexico, Galaxy Advanced Engineering, Inc.AlbuquerqueUSA

Personalised recommendations