Modeling Spatially-Correlated Cellular Networks by Using Inhomogeneous Poisson Point Processes

  • Marco Di RenzoEmail author
  • Shanshan Wang
  • Xiaojun XI
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 257)


In this paper, we introduce the Inhomogeneous Double Thinning (IDT) approach, which allows us to analyze the performance of downlink cellular networks in which the Base Stations (BSs) constitute a stationary Point Process (PP) that exhibits some degree of spatial repulsion (i.e., inhibition). The accuracy of the proposed IDT approach is substantiated by using empirical data for the spatial distribution of the BSs.


Cellular networks Stochastic geometry Inhomogeneous point processes Spatial inhibition 


  1. 1.
    Andrews, J.G., Baccelli, F., Ganti, R.K.: A tractable approach to coverage and rate in cellular networks. IEEE Trans. Commun. 59(11), 3122–3134 (2011)CrossRefGoogle Scholar
  2. 2.
    Di Renzo, M., Guidotti, A., Corazza, G.E.: Average rate of downlink heterogeneous cellular networks over generalized fading channels - a stochastic geometry approach. IEEE Trans. Commun. 61(7), 3050–3071 (2013)CrossRefGoogle Scholar
  3. 3.
    Di Renzo, M.: Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks. IEEE Trans. Wirel. Commun. 14(9), 5038–5057 (2015)CrossRefGoogle Scholar
  4. 4.
    Di Renzo, M., Guan, P.: Stochastic geometry modeling and system-level analysis of uplink heterogeneous cellular networks with multi-antenna base stations. IEEE Trans. Commun. 64(6), 2453–2476 (2016)CrossRefGoogle Scholar
  5. 5.
    Di Renzo, M., Zapppone, A., Lam, T.T., Debbah, M.: System-level modeling and optimization of the energy efficiency in cellular networks - a stochastic geometry framework. IEEE Trans. Wirel. Commun. 17(4), 2539–2556 (2018)CrossRefGoogle Scholar
  6. 6.
    Di Renzo, M., Lu, W., Guan, P.: The intensity matching approach: a tractable stochastic geometry approximation to system-level analysis of cellular networks. IEEE Trans. Wirel. Commun. 15(9), 5963–5983 (2016)CrossRefGoogle Scholar
  7. 7.
    Li, Y., Baccelli, F., Dhillon, H., Andrews, J.: Statistical modeling and probabilistic analysis of cellular networks with determinantal point processes. IEEE Trans. Commun. 63(9), 3405–3422 (2015)CrossRefGoogle Scholar
  8. 8.
    Deng, N., Zhou, W., Haenggi, M.: The Ginibre point process as a model for wireless networks with repulsion. IEEE Trans. Wirel. Commun. 14(1), 107–121 (2015)CrossRefGoogle Scholar
  9. 9.
    Kibilda, J., Galkin, B., DaSilva, L.A.: Modelling multi-operator base station deployment patterns in cellular networks. IEEE Trans. Mob. Comput. 15(12), 3087–3099 (2016)CrossRefGoogle Scholar
  10. 10.
    Baddeley, A., Rubak, E., Turner, R.: Spatial Point Patterns: Methodology and Applications with R. Chapman and Hall/CRC, New York (2015)CrossRefGoogle Scholar
  11. 11.
    Streit, R.L.: Poisson Point Processes: Imaging, Tracking, and Sensing. Springer, Boston (2010). Scholar
  12. 12.
    Haenggi, M.: Stochastic Geometry for Wireless Networks. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  13. 13.
    Di Renzo, M., Wang, S., Xi, X.: Inhomogeneous double thinning–modeling and analysis of cellular networks by using inhomogeneous Poisson point processes. IEEE Trans. Wirel. Commun. 17(8), 5162–5182 (2018)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  1. 1.Paris-Saclay University & CNRS, Signals and Systems Laboratory (UMR 8506), CentraleSupelecParisFrance

Personalised recommendations