Outage Probability of Cognitive Heterogeneous Networks with Multiple Primary Users and Unreliable Backhaul Connections

  • Cheng YinEmail author
  • Jingxian Xie
  • Emiliano Garcia-Palacios
  • Hien M. Nguyen
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 257)


A cognitive heterogeneous network with unreliable backhaul connections is studied in this paper. In this system, a macro-base station connected to cloud transmits information to multiple small cells via backhaul links. In addition, multiple small cells acting as secondary transmitters send information to a receiver by sharing the same spectrum with multiple primary users. Bernoulli process is adopted to model the backhaul reliability. Selection combining protocol is used at the receiver side to maximize the received signal-to-noise ratio. We investigate the impacts of the number of small-cells, the number of primary users as well as the backhaul reliability on the system performance, i.e., outage probability in Rayleigh fading channels. Closed-form expressions are derived and asymptotic analysis is also provided.


Cognitive radio network Wireless unreliable backhaul Heterogeneous network Multiple primary users 



This work was supported by the Newton Prize 2017 and by a Research Environment Links grant, ID 339568416, under the Newton Programme Vietnam partnership. The grant is funded by the UK Department of Business, Energy and Industrial Strategy (BEIS) and delivered by the British Council. For further information, please visit


  1. 1.
    Kim, K.J., Khan, T.A., Orlik, P.V.: Performance analysis of cooperative systems with unreliable backhauls and selection combining. IEEE Trans. Veh. Technol. 66(3), 2448–2461 (2017)CrossRefGoogle Scholar
  2. 2.
    Scott-Hayward, S., Garcia-Palacios, E.: Channel time allocation PSO for gigabit multimedia wireless networks. IEEE Trans. Multimed. 16(3), 828–836 (2014)CrossRefGoogle Scholar
  3. 3.
    ElSawy, H., Hossain, E., Kim, D.I.: Hetnets with cognitive small cells: user offloading and distributed channel access techniques. IEEE Commun. Mag. 51(6), 28–36 (2013)CrossRefGoogle Scholar
  4. 4.
    Madan, R., Borran, J., Sampath, A., Bhushan, N., Khandekar, A., Ji, T.: Cell association and interference coordination in heterogeneous LTE-A cellular networks. IEEE J. Sel. Areas Commun. 28(9), 1479–1489 (2010)CrossRefGoogle Scholar
  5. 5.
    Nguyen, L.D., Tuan, H.D., Duong, T.Q.: Energy-efficient signalling in QoS constrained heterogeneous networks. IEEE Access 4, 7958–7966 (2016)CrossRefGoogle Scholar
  6. 6.
    Yin, C., Nguyen, H.T., Kundu, C., Kaleem, Z., Garcia-Palacios, E., Duong, T.Q.: Secure energy harvesting relay networks with unreliable backhaul connections. IEEE Access 6, 12074–12084 (2018)CrossRefGoogle Scholar
  7. 7.
    Ali, M.S., Synthia, M.: Performance analysis of JT-CoMP transmission in heterogeneous network over unreliable backhaul. In: 2015 International Conference on Electrical Engineering and Information Communication Technology (ICEEICT), pp. 1–5. IEEE (2015)Google Scholar
  8. 8.
    Nguyen, H.T., Duong, T.Q., Dobre, O.A., Hwang, W.-J.: Cognitive heterogeneous networks with best relay selection over unreliable backhaul connections. In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), pp. 1–5. IEEE (2017)Google Scholar
  9. 9.
    Nguyen, H.T., Ha, D.-B., Nguyen, S.Q., Hwang, W.-J.: Cognitive heterogeneous networks with unreliable backhaul connections. Mob. Netw. Appl., 1–14 (2017)Google Scholar
  10. 10.
    Liu, H., Kim, K.J., Tsiftsis, T.A., Kwak, K.S., Poor, H.V.: Secrecy performance of finite-sized cooperative full-duplex relay systems with unreliable backhauls. IEEE Trans. Signal Process. 65(23), 6185–6200 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Liu, H., Kwak, K.S.: Outage probability of finite-sized selective relaying systems with unreliable backhauls. In: 2017 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1232–1237. IEEE (2017)Google Scholar
  12. 12.
    Nguyen, H.T., Duong, T.Q., Hwang, W.-J.: Multiuser relay networks over unreliable backhaul links under spectrum sharing environment. IEEE Commun. Lett. 21(10), 2314–2317 (2017)CrossRefGoogle Scholar
  13. 13.
    Khan, T.A., Orlik, P., Kim, K.J., Heath, R.W.: Performance analysis of cooperative wireless networks with unreliable backhaul links. IEEE Commun. Lett. 19(8), 1386–1389 (2015)CrossRefGoogle Scholar
  14. 14.
    Kim, K.J., Yeoh, P.L., Orlik, P.V., Poor, H.V.: Secrecy performance of finite-sized cooperative single carrier systems with unreliable backhaul connections. IEEE Trans. Signal Process. 64(17), 4403–4416 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Nguyen, H.T., Zhang, J., Yang, N., Duong, T.Q., Hwang, W.-J.: Secure cooperative single carrier systems under unreliable backhaul and dense networks impact. IEEE Access 5, 18310–18324 (2017)CrossRefGoogle Scholar
  16. 16.
    Kim, K.J., Orlik, P.V., Khan, T.A.: Performance analysis of finite-sized co-operative systems with unreliable backhauls. IEEE Trans. Wirel. Commun. 15(7), 5001–5015 (2016)CrossRefGoogle Scholar
  17. 17.
    Kim, K.J., Wang, L., Duong, T.Q., Elkashlan, M., Poor, H.V.: Cognitive single-carrier systems: joint impact of multiple licensed transceivers. IEEE Trans. Wirel. Commun. 13(12), 6741–6755 (2014)CrossRefGoogle Scholar
  18. 18.
    Deng, Y., Kim, K.J., Duong, T.Q., Elkashlan, M., Karagiannidis, G.K., Nallanathan, A.: Full-duplex spectrum sharing in cooperative single carrier systems. IEEE Trans. Cogn. Commun. Netw. 2(1), 68–82 (2016)CrossRefGoogle Scholar
  19. 19.
    Yin, C., Doan, T.X., Nguyen, N.-P., Mai, T., Nguyen, L.D.: Outage probability of full-duplex cognitive relay networks with partial relay selection. In: International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), pp. 115–118. IEEE (2017)Google Scholar
  20. 20.
    Duong, T., Bao, V.N.Q., Zepernick, H.-J.: Exact outage probability of cognitive AF relaying with underlay spectrum sharing. Electron. Lett. 47(17), 1001–1002 (2011)CrossRefGoogle Scholar
  21. 21.
    Zhang, J., Nguyen, N.-P., Zhang, J., Garcia-Palacios, E., Le, N.P.: Impact of primary networks on the performance of energy harvesting cognitive radio networks. IET Commun. 10(18), 2559–2566 (2016)CrossRefGoogle Scholar
  22. 22.
    Huang, H., Li, Z., Si, J.: Multi-source multi-relay underlay cognitive radio networks with multiple primary users. In: 2015 IEEE International Conference on Communications (ICC), pp. 7558–7563. IEEE (2015)Google Scholar
  23. 23.
    Feng, X., Gao, X., Zong, R.: Cooperative jamming for enhancing security of cognitive radio networks with multiple primary users. China Commun. 14(7), 1–15 (2017)CrossRefGoogle Scholar
  24. 24.
    Duong, T.Q., Yeoh, P.L., Bao, V.N.Q., Elkashlan, M., Yang, N.: Cognitive relay networks with multiple primary transceivers under spectrum-sharing. IEEE Signal Process. Lett. 19(11), 741–744 (2012)CrossRefGoogle Scholar
  25. 25.
    Tran, H., Duong, T.Q., Zepernick, H.-J.: Performance analysis of cognitive relay networks under power constraint of multiple primary users. In: 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011), pp. 1–6. IEEE (2011)Google Scholar
  26. 26.
    Duong, T., Bao, V.N.Q., Tran, H., Alexandropoulos, G.C., Zepernick, H.-J.: Effect of primary network on performance of spectrum sharing AF relaying. Electron. Lett. 48(1), 25–27 (2012)CrossRefGoogle Scholar
  27. 27.
    Jeffrey, A., Zwillinger, D.: Table of Integrals, Series, and Products. Academic press, Cambridge (2007)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Cheng Yin
    • 1
    Email author
  • Jingxian Xie
    • 1
  • Emiliano Garcia-Palacios
    • 1
  • Hien M. Nguyen
    • 2
  1. 1.Queen’s University BelfastBelfastUK
  2. 2.Duy Tan UniversityDa NangVietnam

Personalised recommendations