Impact of Opportunistic Transmission on MCIK-OFDM: Diversity and Coding Gains

  • Thien Van Luong
  • Youngwook KoEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 257)


This work proposes an opportunistic scheduling scheme for Multi-Carrier Index Keying - Orthogonal Frequency Division Multiplexing (MCIK-OFDM), which is termed as OS-MCIK-OFDM. Particularly, in every transmission, the proposed scheme allows only one machine whose worst sub-channel is the maximum among several machines’ worst sub-channels, to communicate with the central device, employing MCIK-OFDM technique. As a result, OS-MCIK-OFDM can harvest the multi-user diversity gain to enhance the reliability of MCIK-OFDM, especially when the number of machines increases. For performance analysis, we derive the closed-form expression for the symbol error probability (SEP), which is then asymptotically analyzed to develop unique features that can address achievable diversity and coding gains, as well as impacts of system parameters. Finally, simulation results are presented to validate the accuracy of the derived SEP performance of OS-MCIK-OFDM and specifically its superiority over the opportunistic scheduling OFDM.


MICK-OFDM OFDM-IM Index modulation IM Opportunistic scheduling Symbol error probability (SEP) 


  1. 1.
    Abu-alhiga, R., Haas, H.: Subcarrier-index modulation OFDM. In: Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 177–181, September 2009Google Scholar
  2. 2.
    Basar, E., Aygolu, U., Panayirci, E., Poor, H.V.: Orthogonal frequency division multiplexing with index modulation. IEEE Trans. Signal Process. 61(22), 5536–5549 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Basar, E., Wen, M., Mesleh, R., Renzo, M.D., Xiao, Y., Haas, H.: Index modulation techniques for next-generation wireless networks. IEEE Access 5, 16693–16746 (2017)CrossRefGoogle Scholar
  4. 4.
    Luong, T.V., Ko, Y., Choi, J.: Repeated MCIK-OFDM with enhanced transmit diversity under CSI uncertainty. IEEE Trans. Wireless Commun. 17(6), 4079–4088 (2018)CrossRefGoogle Scholar
  5. 5.
    Luong, T.V., Ko, Y.: A closed-form symbol error probability for MCIK-OFDM with frequency diversity. In: Proceedings of IEEE SPAWC, July 2017, pp. 1–5 (2017)Google Scholar
  6. 6.
    Basar, E.: OFDM with index modulation using coordinate interleaving. IEEE Wireless Commun. Lett. 4(4), 381–384 (2015)CrossRefGoogle Scholar
  7. 7.
    Zheng, J., Chen, R.: Achieving transmit diversity in OFDM-IM by utilizing multiple signal constellations. IEEE Access 5(99), 8978–8988 (2017)CrossRefGoogle Scholar
  8. 8.
    Ko, Y.: A tight upper bound on bit error rate of joint OFDM and multi-carrier index keying. IEEE Commun. Lett. 18(10), 1763–1766 (2014)CrossRefGoogle Scholar
  9. 9.
    Wen, M., Cheng, X., Ma, M., Jiao, B., Poor, H.V.: On the achievable rate of OFDM with index modulation. IEEE Trans. Signal Process. 64(8), 1919–1932 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Luong, T.V., Ko, Y.: Symbol error outage performance analysis of MCIK-OFDM over complex TWDP fading. In: Proceedings of European Wireless, May 2017, pp. 1–5 (2017)Google Scholar
  11. 11.
    Crawford, J., Chatziantoniou, E., Ko, Y.: On the SEP analysis of OFDM index modulation with hybrid low complexity greedy detection and diversity reception. IEEE Trans. Veh. Technol. 66(9), 8103–8118 (2017)CrossRefGoogle Scholar
  12. 12.
    Luong, T.V., Ko, Y.: The BER analysis of MRC-aided greedy detection for OFDM-IM in presence of uncertain CSI. IEEE Wireless Commun. Lett., to be publishedGoogle Scholar
  13. 13.
    Zheng, B., Chen, F., Wen, M., Ji, F., Yu, H., Liu, Y.: Low-complexity ML detector and performance analysis for OFDM with in-phase/quadrature index modulation. IEEE Commun. Lett. 19(11), 1893–1896 (2015)CrossRefGoogle Scholar
  14. 14.
    Mao, T., Wang, Z., Wang, Q., Chen, S., Hanzo, L.: Dual-mode index modulation aided OFDM. IEEE Access 5, 50–60 (2017)CrossRefGoogle Scholar
  15. 15.
    Wen, M., Basar, E., Li, Q., Zheng, B., Zhang, M.: Multiple-mode orthogonal frequency division multiplexing with index modulation. IEEE Trans. Commun. 65(9), 3892–3906 (2017)CrossRefGoogle Scholar
  16. 16.
    Basar, E.: On multiple-input multiple-output OFDM with index modulation for next generation wireless networks. IEEE Trans. Signal Process. 64(15), 3868–3878 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Luong, T.V., Ko, Y.: Impact of CSI uncertainty on MCIK-OFDM: tight, closed-form symbol error probability analysis. IEEE Trans. Veh. Technol. 67(2), 1272–1279 (2018)CrossRefGoogle Scholar
  18. 18.
    Van Luong, T., Ko, Y.: A tight bound on BER of MCIK-OFDM with greedy detection and imperfect CSI. IEEE Commun. Lett. 21(12), 2594–2597 (2017)CrossRefGoogle Scholar
  19. 19.
    Luong, T.V., Ko, Y., Choi, J.: Precoding for spread OFDM IM. In: Proceedings of IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–5 (2018)Google Scholar
  20. 20.
    Proakis, J.: Digital Communications. McGraw-Hill, New York City (2001)zbMATHGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  1. 1.Institute of ECITQueen’s University BelfastBelfastUK

Personalised recommendations