Advertisement

HHUSI: An Efficient Algorithm for Hiding Sensitive High Utility Itemsets

  • Vy Huynh TrieuEmail author
  • Chau Truong Ngoc
  • Hai Le Quoc
  • Long Nguyen Thanh
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 257)

Abstract

Itemset hiding is a technique that modifies data in order to remove sensitive itemsets from a database. The traditional frequent itemset hiding algorithms cannot be applied directly into high utility itemset hiding problem. In order to solve this problem, Tseng et al. [8] proposed HHUIF and MSICF algorithms. The important target of high utility itemset hiding process is to minimize the side effects caused by data distortion, including missing itemsets, ghost itemsets, remaining sensitive itemsets, and database accuracy. In this paper, we propose an algorithm, named HHUSI, for hiding high utility sensitive itemsets. The method consists of two steps: (1) identify victim transaction and victim item and (2) modify internal utility of the victim item in the victim transaction. Experiment shows that the performance of this method is better than HHUIF and MSICF.

Keywords

High utility itemset High utility itemset mining High utility sensitive itemset Privacy preserving in data mining 

References

  1. 1.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: ACM SIGMOD Record, pp. 207–216 (1993)CrossRefGoogle Scholar
  2. 2.
    Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities from databases. In: Proceedings of the 2004 SIAM International Conference on Data Mining, pp. 482–486 (2004)Google Scholar
  3. 3.
    Erwin, A., Gopalan, R.P., Achuthan, N.R.: Efficient mining of high utility itemsets from large datasets. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 554–561. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68125-0_50CrossRefGoogle Scholar
  4. 4.
    Fournier-Viger, P., Wu, C.-W., Zida, S., Tseng, Vincent S.: FHM: faster high-utility itemset mining using estimated utility co-occurrence pruning. In: Andreasen, T., Christiansen, H., Cubero, J.-C., Raś, Zbigniew W. (eds.) ISMIS 2014. LNCS (LNAI), vol. 8502, pp. 83–92. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08326-1_9CrossRefGoogle Scholar
  5. 5.
    Liu, M., Qu, J.: Mining high utility itemsets without candidate generation. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, pp. 55–64 (2012)Google Scholar
  6. 6.
    Liu, Y., Liao, W.-K., Choudhary, A.: A fast high utility itemsets mining algorithm. In: Proceedings of the 1st international Workshop on Utility-Based Data Mining, pp. 90–99 (2005)Google Scholar
  7. 7.
    Liu, Y., Liao, W.-k., Choudhary, A.: A two-phase algorithm for fast discovery of high utility itemsets. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 689–695. Springer, Heidelberg (2005).  https://doi.org/10.1007/11430919_79CrossRefGoogle Scholar
  8. 8.
    Tseng, V.S., Wu, C.-W., Shie, B.-E., Yu, P.S.: UP-growth: an efficient algorithm for high utility itemset mining. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 253–262 (2010)Google Scholar
  9. 9.
    Wu, C.W., Shie, B.-E., Tseng, V.S., Yu, P.S.: Mining top-k high utility itemsets. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 78–86 (2012)Google Scholar
  10. 10.
    Zida, S., Fournier-Viger, P., Lin, J.C.-W., Wu, C.-W., Tseng, V.S.: EFIM: a highly efficient algorithm for high-utility itemset mining. In: Sidorov, G., Galicia-Haro, S.N. (eds.) MICAI 2015. LNCS (LNAI), vol. 9413, pp. 530–546. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27060-9_44CrossRefGoogle Scholar
  11. 11.
    Yeh, J.-S., Hsu, P.-C.: HHUIF and MSICF: Novel algorithms for privacy preserving utility mining. Expert Syst. Appl. 37, 4779–4786 (2010)CrossRefGoogle Scholar
  12. 12.
    Selvaraj, R., Kuthadi, V.M.: A modified hiding high utility item first algorithm (HHUIF) with item selector (MHIS) for hiding sensitive itemsets (2013)Google Scholar
  13. 13.
    Lin, C.-W., Hong, T.-P., Wong, J.-W., Lan, G.-C., Lin, W.-Y.: A GA-based approach to hide sensitive high utility itemsets. Sci. World J. 2014 (2014)Google Scholar
  14. 14.
    Lin, J.C.-W., Wu, T.-Y., Fournier-Viger, P., Lin, G., Zhan, J., Voznak, M.: Fast algorithms for hiding sensitive high-utility itemsets in privacy-preserving utility mining. In: Engineering Applications of Artificial Intelligence, vol. 55, pp. 269–284 (2016)CrossRefGoogle Scholar
  15. 15.
    Lin, J.C.-W., Hong, T.-P., Fournier-Viger, P., Liu, Q., Wong, J.-W., Zhan, J.: Efficient hiding of confidential high-utility itemsets with minimal side effects. J. Exp. Theor. Artif. Intell. 29, 1225–1245 (2017)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Vy Huynh Trieu
    • 1
    Email author
  • Chau Truong Ngoc
    • 2
  • Hai Le Quoc
    • 3
  • Long Nguyen Thanh
    • 3
  1. 1.Pham Van Dong UniversityQuang Ngai CityVietnam
  2. 2.Da Nang UniversityDa Nang CityVietnam
  3. 3.Quang Tri Teacher Training CollegeDong Ha CityVietnam

Personalised recommendations