Advertisement

Optimal Beamforming for Multiuser Secure SWIPT Systems (Invited Paper)

  • Yuqing Su
  • Derrick Wing Kwan NgEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 257)

Abstract

In this paper, we study the beamforming design for simultaneous wireless information and power transfer (SWIPT) downlink systems. The design is formulated as a non-convex optimization problem which takes into account the quality of service (QoS) requirements of communication security and minimum harvested power. In particular, the proposed design advocates the dual use of energy signal to enable secure communication and efficient WPT. The globally optimal solution of the optimization problem is obtained via the semidefinite programming relaxation (SDR). Our simulation results show that there exists a non-trivial tradeoff between the achievable data rate and the total harvested power in the system. Besides, our proposed optimal scheme provides a substantial performance gain compared to a simple suboptimal scheme based on the maximum ratio transmission (MRT).

Keywords

SWIPT Physical layer security Energy beamforming 

References

  1. 1.
    Ng, D.W.K., Leng, S., Schober, R.: Multiple Antennas and Beamforming for SWIPT Systems, pp. 170–216. Cambridge University Press, Cambridge (2016)Google Scholar
  2. 2.
    Ding, Z., et al.: Application of smart antenna technologies in simultaneous wireless information and power transfer. IEEE Commun. Mag. 53(4), 86–93 (2015)CrossRefGoogle Scholar
  3. 3.
    Wong, V., Schober, R., Ng, D.W.K., Wang, L.-C.: Key Technologies for 5G Wireless Systems. Cambridge University Press, Cambridge (2017)CrossRefGoogle Scholar
  4. 4.
    Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge (2005)Google Scholar
  5. 5.
    Ng, D.W.K., Lo, E.S., Schober, R.: Energy-efficient resource allocation in OFDMA systems with large numbers of base station antennas. IEEE Trans. Wirel. Commun. 11(9), 3292–3304 (2012)CrossRefGoogle Scholar
  6. 6.
    Wu, Q., Li, G.Y., Chen, W., Ng, D.W.K., Schober, R.: An overview of sustainable green 5G networks. IEEE Wirel. Commun. 24(4), 72–80 (2017)CrossRefGoogle Scholar
  7. 7.
    Marzetta, T.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9, 3590–3600 (2010)CrossRefGoogle Scholar
  8. 8.
    Ng, D.W.K., Lo, E.S., Schober, R.: Energy-efficient resource allocation in multi-cell OFDMA systems with limited backhaul capacity. IEEE Trans. Wirel. Commun. 11, 3618–3631 (2012)CrossRefGoogle Scholar
  9. 9.
    Zorzi, M., Gluhak, A., Lange, S., Bassi, A.: From today’s INTRAnet of things to a future INTERnet of Things: a wireless- and mobility-related view. IEEE Wirel. Commun. 17, 44–51 (2010)CrossRefGoogle Scholar
  10. 10.
    Ahmed, I., Ikhlef, A., Ng, D.W.K., Schober, R.: Power allocation for an energy harvesting transmitter with hybrid energy sources. IEEE Trans. Wirel. Commun. 12, 6255–6267 (2013)CrossRefGoogle Scholar
  11. 11.
    Ng, D.W.K., Lo, E.S., Schober, R.: Energy-efficient resource allocation in OFDMA systems with hybrid energy harvesting base station. IEEE Trans. Wirel. Commun. 12, 3412–3427 (2013)CrossRefGoogle Scholar
  12. 12.
    Chen, X., Zhang, Z., Chen, H.-H., Zhang, H.: Enhancing wireless information and power transfer by exploiting multi-antenna techniques. IEEE Commun. Mag. 4, 133–141 (2015)CrossRefGoogle Scholar
  13. 13.
    Varshney, L.: Transporting Information and Energy Simultaneously. In: Proceedings of IEEE International Symposium on Information Theory, pp. 1612–1616, July 2008Google Scholar
  14. 14.
    Tesla Memroial Society of New York, “Nikola Tesla’s Idea of Wireless Transmission of Electrical Energy is a solution for World Energy Crisis” (2011). [Online]. http://www.teslasociety.com/tesla_tower.htm
  15. 15.
    Powercast Coporation: “RF Energy Harvesting and Wireless Power for Low-Power Applications” (2011). [Online]. http://www.mouser.com/pdfdocs/Powercast-Overview-2011-01-25.pdf
  16. 16.
    Ng, D., Schober, R.: Max-min fair wireless energy transfer for secure multiuser communication systems. In: IEEE Information Theory Workshop (ITW), pp. 326–330, November 2014Google Scholar
  17. 17.
    Ng, D.W.K., Schober, R., Alnuweiri, H.: Secure layered transmission in multicast systems with wireless information and power transfer. In: Proceedings of IEEE International Communication Conference, pp. 5389–5395, June 2014Google Scholar
  18. 18.
    Wyner, A.D.: The Wire-Tap Channel. Technical report, October 1975Google Scholar
  19. 19.
    Zhu, J., Schober, R., Bhargava, V.: Secure transmission in multicell massive MIMO systems. IEEE Trans. Wirel. Commun. 13, 4766–4781 (2014)CrossRefGoogle Scholar
  20. 20.
    Goel, S., Negi, R.: Guaranteeing secrecy using artificial noise. IEEE Trans. Wirel. Commun. 7, 2180–2189 (2008)CrossRefGoogle Scholar
  21. 21.
    Wang, H.M., Wang, C., Ng, D., Lee, M., Xiao, J.: Artificial noise assisted secure transmission for distributed antenna systems. IEEE Trans. Sig. Process. 64(15), 4050–4064 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Chen, J., Chen, X., Gerstacker, W.H., Ng, D.W.K.: Resource allocation for a massive MIMO relay aided secure communication. IEEE Trans. Inf. Forensics Secur. 11(8), 1700–1711 (2016)CrossRefGoogle Scholar
  23. 23.
    Ng, D.W.K., Lo, E.S., Schober, R.: Efficient resource allocation for secure OFDMA systems. IEEE Trans. Veh. Technol. 61, 2572–2585 (2012)CrossRefGoogle Scholar
  24. 24.
    Wang, H.M., Wang, C., Ng, D.W.K.: Artificial noise assisted secure transmission under training and feedback. IEEE Trans. Sig. Process. 63(23), 6285–6298 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Chen, X., Ng, D.W.K., Chen, H.H.: Secrecy wireless information and power transfer: challenges and opportunities. IEEE Wirel. Commun. 23(2), 54–61 (2016)CrossRefGoogle Scholar
  26. 26.
    Zhou, X., Zhang, R., Ho, C.K.: Wireless information and power transfer: architecture design and rate-energy tradeoff. In: Proceedings of IEEE Global Telecommunication Conference, December 2012Google Scholar
  27. 27.
    Ng, D.W.K., Lo, E.S., Schober, R.: Energy-efficient resource allocation in multiuser OFDM systems with wireless information and power transfer. In: Proceedings of IEEE Wireless Communication and Networking Conference (2013)Google Scholar
  28. 28.
    Leng, S., Ng, D.W.K., Schober, R.: Power efficient and secure multiuser communication systems with wireless information and power transfer. In: Proceedings of IEEE International Communication Conference, June 2014Google Scholar
  29. 29.
    Ng, D.W.K., Xiang, L., Schober, R.: Multi-objective beamforming for secure communication in systems with wireless information and power transfer. In: Proceedings of IEEE Personal Indoor and Mobile Radio Communication Symposium (2013)Google Scholar
  30. 30.
    Ng, D.W.K., Schober, R.: Resource allocation for coordinated multipoint networks with wireless information and power transfer. In: Proceedings of IEEE Global Telecommunication Conference, pp. 4281–4287, December 2014Google Scholar
  31. 31.
    Chynonova, M., Morsi, R., Ng, D.W.K., Schober, R.: Optimal multiuser scheduling schemes for simultaneous wireless information and power transfer. In: 23rd European Signal Processing Conference (EUSIPCO), August 2015Google Scholar
  32. 32.
    Wu, Q., Tao, M., Ng, D.W.K., Chen, W., Schober, R.: Energy-efficient transmission for wireless powered multiuser communication networks. In: Proceedings of IEEE International Communication Conference, June 2015Google Scholar
  33. 33.
    Boshkovska, E., Ng, D., Zlatanov, N., Schober, R.: Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Commun. Lett. 19, 2082–2085 (2015)CrossRefGoogle Scholar
  34. 34.
    Boshkovska, E., Ng, D.W.K., Zlatanov, N., Koelpin, A., Schober, R.: Robust resource allocation for MIMO wireless powered communication networks based on a non-linear EH model. IEEE Trans. Commun. 65(5), 1984–1999 (2017)CrossRefGoogle Scholar
  35. 35.
    Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications, 1st edn. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  36. 36.
    Tse, D., Viswanath, P.: Fundamentals of Wireless Communication, 1st edn. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  1. 1.School of Electrical Engineering and TelecommunicationsThe University of New South WalesSydneyAustralia

Personalised recommendations