Introduction to Compressive Sampling (CS)

  • Venkata Rajesh Pamula
  • Chris Van Hoof
  • Marian Verhelst
Part of the Analog Circuits and Signal Processing book series (ACSP)


This chapter provides an overview of compressive sampling (CS), introducing both the signal acquisition and reconstruction protocols. A novel, computationally light, overlapped window reconstruction algorithm is introduced to circumvent the problem of edge artifacts in conventional CS reconstruction. The proposed approach is shown to reduce the central processing unit (CPU) execution time by a factor of 2.4 without degradation of reconstruction accuracy compared to a traditional longer window reconstruction approach for photoplethysmogram (PPG) signals. Finally, this chapter also presents the state-of-the-art CS implementations for biosignal acquisition and processing.


  1. 27.
    E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRefGoogle Scholar
  2. 28.
    D. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)MathSciNetCrossRefGoogle Scholar
  3. 37.
    G.B. Moody, R.G. Mark, MIT-BIH arrhythmia database (1992) [Online]. Available:
  4. 38.
    H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9), 2456–2466 (2011)CrossRefGoogle Scholar
  5. 52.
    D. Gangopadhyay, E.G. Allstot, A.M.R. Dixon, K. Natarajan, S. Gupta, D.J. Allstot, Compressed sensing analog front-end for bio-sensor applications. IEEE J. Solid State Circuits 49(2), 426–438 (2014)CrossRefGoogle Scholar
  6. 53.
    Y. Li, D. Zhao, W.A. Serdijn, A sub-microwatt asynchronous level-crossing ADC for biomedical applications. IEEE Trans. Biomed. Circuits Syst. 7(2), 149–157 (2013)CrossRefGoogle Scholar
  7. 55.
    C. Weltin-Wu, Y. Tsividis, An event-driven clockless level-crossing ADC with signal-dependent adaptive resolution. IEEE J. Solid State Circuits 48(9), 2180–2190 (2013)CrossRefGoogle Scholar
  8. 56.
    B. Schell, Y. Tsividis, A continuous-time ADC/DSP/DAC system with no clock and with activity-dependent power dissipation. IEEE J. Solid State Circuits 43(11), 2472–2481 (2008)CrossRefGoogle Scholar
  9. 57.
    M. Trakimas, S.R. Sonkusale, An adaptive resolution asynchronous ADC architecture for data compression in energy constrained sensing applications. IEEE Trans. Circuits Syst. I Regul. Pap. 58(5), 921–934 (2011)MathSciNetCrossRefGoogle Scholar
  10. 58.
    E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process Mag. 25(2), 21–30 (2008)CrossRefGoogle Scholar
  11. 59.
    D.L. Donoho, Y. Tsaig, Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54(11), 4789–4812 (2008)CrossRefGoogle Scholar
  12. 60.
    E. Candes, J. Romberg, l1-magic: recovery of sparse signals via convex programming, vol. 4, p. 14 (2005).
  13. 61.
    R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. (1996), pp. 267–288MathSciNetzbMATHGoogle Scholar
  14. 62.
    W. Lu, N. Vaswani, Modified basis pursuit denoising(modified-BPDN) for noisy compressive sensing with partially known support, in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (Institute of Electrical and Electronics Engineers (IEEE), Piscataway, 2010), pp. 3926–3929CrossRefGoogle Scholar
  15. 63.
    M.A.T. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Sign. Proces. 1(4), 586–597 (2007)CrossRefGoogle Scholar
  16. 64.
    A.M.R. Dixon, E.G. Allstot, D. Gangopadhyay, D.J. Allstot, Compressed sensing system considerations for ECG and EMG wireless biosensors. IEEE Trans. Biomed. Circuits Syst. 6(2), 156–166 (2012)CrossRefGoogle Scholar
  17. 65.
    F. Ren, D. Marković, 18.5 A configurable 12-to-237kS/s 12.8 mW sparse-approximation engine for mobile ExG data aggregation, in 2015 IEEE International Solid-State Circuits Conference-(ISSCC) Digest of Technical Papers (IEEE, Piscataway, 2015), pp. 1–3Google Scholar
  18. 66.
    P. Maechler, C. Studer, D.E. Bellasi, A. Maleki, A. Burg, N. Felber, H. Kaeslin, R.G. Baraniuk, VLSI design of approximate message passing for signal restoration and compressive sensing. IEEE J. Emerging Sel. Top. Circuits Syst. 2(3), 579–590 (2012)CrossRefGoogle Scholar
  19. 67.
    P. Maechler, P. Greisen, B. Sporrer, S. Steiner, N. Felber, A. Burg, Implementation of greedy algorithms for LTE sparse channel estimation, in 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (Nov 2010)Google Scholar
  20. 68.
    V.R. Pamula, M. Verhelst, C. Van Hoof, R.F. Yazicioglu, Computationally-efficient compressive sampling for low-power pulseoximeter system, in 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings (IEEE, Piscataway, 2014), pp. 69–72Google Scholar
  21. 69.
    V.R. Pamula, System and method for compressed sensing, U.S. Patent App. 14/886,537, 21 Apr 2016Google Scholar
  22. 70.
    M. Mangia, R. Rovatti, G. Setti, Rakeness in the design of analog-to-information conversion of sparse and localized signals. IEEE Trans. Circuits Syst. Regul. Pap. 59(5), 1001–1014 (2012)MathSciNetCrossRefGoogle Scholar
  23. 71.
    S. Mallet, A Wavelet Tour of Signal Processing (Academic Press, Cambridge, 2009)Google Scholar
  24. 72.
    H. Mamaghanian, N. Khaled, D. Atienza, P. Vandergheynst, Design and exploration of low-power analog to information conversion based on compressed sensing. IEEE J. Emerging Sel. Top. Circuits Syst. 2(3), 493–501 (2012)CrossRefGoogle Scholar
  25. 73.
    M. Shoaran, M.H. Kamal, C. Pollo, P. Vandergheynst, A. Schmid, Compact low-power cortical recording architecture for compressive multichannel data acquisition. IEEE Trans. Biomed. Circuits Syst. 8(6), 857–870 (2014)CrossRefGoogle Scholar
  26. 74.
    F. Chen, A.P. Chandrakasan, V.M. Stojanovic, Design and analysis of a hardware-efficient compressed sensing architecture for data compression in wireless sensors. IEEE J. Solid State Circuits 47(3), 744–756 (2012)CrossRefGoogle Scholar
  27. 75.
    Y. Suo, J. Zhang, T. Xiong, P.S. Chin, R. Etienne-Cummings, T.D. Tran, Energy-efficient multi-mode compressed sensing system for implantable neural recordings. IEEE Trans. Biomed. Circuits Syst. 8(5), 648–659 (2014)CrossRefGoogle Scholar
  28. 76.
    W. Guo, N. Sun, A 9.8b-ENOB 5.5fj/step fully-passive compressive sensing SAR ADC for WSN applications, in 2016 46th European Solid-State Device Research Conference (ESSDERC) (Sep 2016)Google Scholar
  29. 77.
    P.V. Rajesh, J.M. Valero-Sarmiento, L. Yan, A. Bozkurt, C. Van Hoof, N. Van Helleputte, R.F. Yazicioglu, M. Verhelst, A 172μW compressive sampling photoplethysmographic readout with embedded direct heart-rate and variability extraction from compressively sampled data, in 2016 IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, Piscataway, 2016), pp. 386–387Google Scholar
  30. 78.
    M. Trakimas, R. D’Angelo, S. Aeron, T. Hancock, S. Sonkusale, A compressed sensing analog-to-information converter with edge-triggered SAR ADC core. IEEE Trans. Circuits Syst. I, Reg. Pap. 60(5), 1135–1148 (2013)MathSciNetCrossRefGoogle Scholar
  31. 79.
    M. Lustig, D. Donoho, J.M. Pauly, Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)CrossRefGoogle Scholar
  32. 80.
    T. Moy, L. Huang, W. Rieutort-Louis, C. Wu, P. Cuff, S. Wagner, J.C. Sturm, N. Verma, An EEG acquisition and biomarker-extraction system using low-noise-amplifier and compressive-sensing circuits based on flexible, thin-film electronics. IEEE J. Solid State Circuits 52(1), 309–321 (2017)CrossRefGoogle Scholar
  33. 81.
    B. Hu, F. Ren, Z.-Z. Chen, X. Jiang, M.-C. Chang, 9-bit time–digital-converter-assisted compressive-sensing analogue–digital-converter with 4 GS/s equivalent speed. Electron. Lett. 52(6), 430–432 (2016)CrossRefGoogle Scholar
  34. 82.
    D.E. Bellasi, L. Benini, Energy-efficiency analysis of analog and digital compressive sensing in wireless sensors. IEEE Trans. Circuits Syst. Reg. Pap. 62(11), 2718–2729 (2015)MathSciNetCrossRefGoogle Scholar
  35. 83.
    D. Bortolotti, A. Bartolini, L. Benini, V.R. Pamula, N. Van Helleputte, C. Van Hoof, M. Verhelst, T. Gemmeke, R.B. Lopez, G. Ansaloni et al., PHIDIAS: ultra-low-power holistic design for smart bio-signals computing platforms, in Proceedings of the ACM International Conference on Computing Frontiers (ACM, New York, 2016), pp. 309–314Google Scholar
  36. 84.
    J. Zhang, Y. Suo, S. Mitra, S.P. Chin, S. Hsiao, R.F. Yazicioglu, T.D. Tran, R. Etienne-Cummings, An efficient and compact compressed sensing microsystem for implantable neural recordings. IEEE Trans. Biomed. Circuits Syst. 8(4), 485–496 (2014)CrossRefGoogle Scholar
  37. 85.
    P.K. Baheti, H. Garudadri, S. Majumdar, Blood oxygen estimation from compressively sensed photoplethysmograph, in Wireless Health 2010, ser. WH ’10 (ACM, New York, 2010), pp. 10–14Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Venkata Rajesh Pamula
    • 1
  • Chris Van Hoof
    • 1
  • Marian Verhelst
    • 2
  1. 1.imecLeuvenBelgium
  2. 2.KU Leuven ESAT-MICASLeuvenBelgium

Personalised recommendations