Skip to main content

Anode Overvoltages on the Industrial Carbon Blocks

  • Conference paper
  • First Online:
Light Metals 2019

Abstract

40 years ago W. Haupin stressed that anode overvoltages on the carbon materials have a scatter more than 300 mV under the same current density. This is a reason to attempt to find out the reason for greater differences because decreasing the overvoltage promises high energy saving. Experiments in lab.cells in galvanostatic conditions have been conducted to determine the overvoltages for the smelter anodes used in Sayanogorsk and Boguchany smelters (Russia) (more than 80 curves currents-overvoltages are received). Overvoltages are compared with other carbon block properties. Recommendations to use these values as a parameter of carbon block quality were made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thonstad J., Fellner P., Haarberg G.M., Hives J., Kvande H., Sterten A. Aluminium Electrolysis. Fundamentals of Hall-Heroult Process. 3rd edition. Düsseldorf: Aluminium-Verlag Marketing & Kommunikation GmbH, 2001, 359 p.

    Google Scholar 

  2. Rempel S.I. Anodic process in aluminium reduction technology [In Russ]. Sverdlovsk: Gosudarstvennoe nauchno-tehnicheskoe izdatelstvo literatury po chernoy i tsvetnoy metallurgii, 1961, 144 p.

    Google Scholar 

  3. Dorreen M.M.R., Richards N.E., Tabereaux A.T., Welch B.J. Role of Heat Transfer and Interfacial Phenomena for the Formation of Carbon Oxides in Smelting Cells. Light metals, 2017, pp. 659–667.

    Google Scholar 

  4. Dorreen M.M.R., Hyland M.M., Haverkamp R.G., Metson J.B., Jassim Ali, Welch B.J., and Tabereaux A.T. Co-evolution of Carbon Oxides and Fluorides During the Electrowinning of Aluminium with Molten NaF–AlF3–CaF2–Al2O3 Electrolytes. Light metals, 2017, pp. 533–539.

    Google Scholar 

  5. Ouzilleau P., Gheribi A.E., Chartrand P. Prediction of CO2/CO formation from the (primary) anode process in aluminium electrolysis using an electrothermodynamic model (for coke crystallites). Electrochimica Acta, 2018, vol. 259, pp. 916–929.

    Google Scholar 

  6. Chevarin F., Azari K., Lemieux L., Ziegler D., Fafard M., Alamdari H. Active pore sizes during the CO2 gasification of carbon anode at 960 °C. Fuel, 2016, vol. 178, pp. 93–102.

    Google Scholar 

  7. Poncsák S., Kiss L.I. Role of the Porosity of Carbon Anodes in the Nucleation and Growth of Gas Bubbles. Light metals, 2018, pp. 1261–1265.

    Google Scholar 

  8. Grjotheim, K. Introduction to aluminium electrolysis. Understanding the Hall-heroult Process. 2-nd edition. Düsseldorf: Aluminium-Verlag, 1993, 260 p.

    Google Scholar 

  9. Gudbrandsen H., Richards N., Rolseth S., Thonstad J. Field study of the anodic overvoltage in prebaked anode cells. Light Metals, 2003, pp. 323–327.

    Google Scholar 

  10. Haupin, W.E. A scanning reference electrode for voltage contours in aluminum smelting cells. JOM, 1971, October, pp. 46–49.

    Google Scholar 

  11. Thonstad J., Hove E. On the anodic overvoltage in aluminum electrolysis. Canadian Journal of Chemistry, 1964, vol. 42, pp. 1542–1551.

    Google Scholar 

  12. Zuca S., Herdlicka C. and Terzi M. On porosity-overvoltage correlation for carbon anodes in cryolite-alumina melts. Electrochimica Acta. Vol. 25, pp, 211–216.

    Google Scholar 

  13. Leistra J.A., Sides P.J. Hyperpolarization at gas evolving electrodes–II. Hall/Heroult electrolysis. Electrochimica acta, 1988, vol. 33. No. 13, pp. 1761–1766.

    Google Scholar 

  14. Djokic S.S., Conway B.E. and Belliveau T.F. Specificity of anodic processes in cyclic voltammetry to the type of carbon used in electrolysis of cryolite-alumina melts. Journal of Applied Electrochemistry, 1994, vol. 24, pp. 827–834.

    Google Scholar 

  15. Kisza A. Thonstad J., Eidet T. An Impedance Study of the Kinetics and Mechanism of the Anodic Reaction on Graphite Anodes in Saturated Cryolite-Alumina Melts. Journal of Electrochemical society, 1996, vol. 143, No 6, pp. 1840–1847.

    Google Scholar 

  16. Kvande H., Haupin W. Cell voltage in aluminium electrolysis: a practical approach. JOM, 2000, February, pp. 31–37.

    Google Scholar 

  17. Jin X., Jie L., Shao-Long Y., Yan-qing L., Ye-Xiang L. Laboratory study of property-modified prebaked carbon anode and application in large aluminum electrolysis cells. Journal of South Central University Technology, 2005, vol. 12, Suppl. 1, pp. 68–71.

    Google Scholar 

  18. Feng-qin L., Ye-Xiang L., Mannweiler U., Perruchoud R. Effect of coke properties and its blending recipe on performances of carbon anode for aluminium electrolysis. Journal of South Central University Technology, 2006, vol. 13 (6), pp. 647–652.

    Google Scholar 

  19. Kovrov, V.A., Khramov, A.P., Zaikov, Yu.P., Shurov, N.I. Effect of the cationic composition of cryolite-alumina melts on the anodic overvoltage. Russian Journal of Electrochemistry, 2007, vol. 43, Issue 8, pp 909–919.

    Google Scholar 

  20. Nekrasov, V.N., Suzdaltsev, A.V., Limanovskaya, O.V., Khramov, A.P., Zaikov, Y.P. Theoretical and experimental study of anode process at the carbon in KF-AlF3-Al2O3 melts, 2012, vol. 75, pp. 296–304.

    Google Scholar 

  21. Thorne R.J., Sommerseth C., Sandnes E., Kjos O., Aarhaug T.A., Lossius L.P., Linga H. and Ratvik A.P. Electrochemical characterization of carbon anode performance. Light metals, 2013, pp. 1207–1211.

    Google Scholar 

  22. Thorne R.J., Sommerseth C., Svensson A.M., Sandnes E., Linga H. and Ratvik A.P. Understanding anode overpotential. Light metals, 2014, pp. 1213–1217.

    Google Scholar 

  23. Thorne R.J., Sommerseth C., Ratvik A.P., Rorvik S., Sandnes E., Lossius L.P., Linga H. and Svensson A.M. Correlation between Coke Type, Microstructure and Anodic Reaction Overpotential in Aluminium Electrolysis. Journal of Electrochemical Society, 2015, vol. 162 (12) E296–E306.

    Google Scholar 

  24. Eidsvaag I.A. The Influence of Polarization on the Wetting of Anodes in the Hall-Héroult Process. Master thesis, 2016, Trondheim, NTNU, 77 p. Sommerseth C., Thorne R.J., Ratvik A.P., Sandnes E., Rørvik S. Electrochemical reactivity and wetting properties of anodes made from anisotropic and isotropic cokes. Light metals, 2016, pp. 865–870.

    Google Scholar 

  25. Mikhalev Yu.G., Polyakov P.V., Yasinskiy A.S., Polyakov A.A. spikes generation on anode of aluminium reduction cell. Tsvetnye metally, 2018, Vol. 9, pp. 43–48.

    Google Scholar 

  26. Kowalczyk P., Kaneko K., Terzyk A.P., Tanaka H., Kanoh H., Gauden P.A. The evaluation of the surface heterogeneity of carbon blacks from the lattice density functional theory. Carbon, 2004, vol. 42, pp. 1813–1823.

    Google Scholar 

  27. Chevarin F., Azari K., Ziegler D., Gauvin R., Fafard M., Alamdari H. Substrate effect of coke particles on the structure and reactivity of coke/pitch mixtures in carbon anodes. Fuel, 2016, vol.183, pp. 123–131.

    Google Scholar 

  28. Andersen D.H., Zhang Z.L. Fracture and physical properties of carbon anodes for the aluminum reduction cell. Engineering Fracture Mechanics, 2011, vol. 78, pp. 2998–3016.

    Google Scholar 

  29. Azari K., Alamdari H., Aryanpour G., Ziegler D., Picard D., Fafard M. Compaction properties of carbon materials used for prebaked anodes in aluminum production plants. Powder Technology, 2013 vol. 246, pp. 650–657.

    Google Scholar 

  30. Putr E., Brooks G., Snook G.A., Rørvik S., Lossius L.P. and Eick I. Understanding the Anode Porosity as a Means for Improved Aluminium Smelting. Light metals, 2018, pp. 1235–1242.

    Google Scholar 

  31. Sarkar A., Kocaefe D., Kocaefe Y., Sarkar D., Bhattacharyay D., Morais B., Chabot J. Coke–pitch interactions during anode preparation. Fuel, 2014, vol. 117, pp. 598–607.

    Google Scholar 

  32. Khaji K. and Qassemi M.A. The Role of Anode Manufacturing Processes in Net Carbon Consumption. Metals, 2016, 6, 128.

    Google Scholar 

Download references

Acknowledgements

The paper was written using the results, taken during the project 02.G25.31.0181 implementation as a part of complex projects realization program of high efficiency production development, approved by Russian Federation government regulation No. 218 from April the 9th, 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Yasinskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Polyakov, P., Yasinskiy, A., Polyakov, A., Zavadyak, A., Mikhalev, Y., Puzanov, I. (2019). Anode Overvoltages on the Industrial Carbon Blocks. In: Chesonis, C. (eds) Light Metals 2019. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-05864-7_99

Download citation

Publish with us

Policies and ethics