Advertisement

Multi-Component High Pressure Die Casting (M-HPDC): Temperature Influence on the Bond Strength of Metal-Plastic-Hybrids Manufactured by M-HPDC

  • Patrick MesserEmail author
  • Arthur Bulinger
  • Uwe Vroomen
  • Andreas Bührig-Polaczek
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

M-HPDC is an In-Mold manufacturing process combining high pressure die casting (HPDC) and Injection Molding (IM) within a single die. The M-HPDC cycle starts with the injection of molten aluminum via a conventional cold-chamber HPDC process and is followed by an IM process into the same die in order to manufacture a metal-plastic hybrid specimen. The new Hybrid-III die is equipped with extensive means for temperature control, e.g. multiple cooling circuits, heating cartridges and thermocouples in order to adjust the temperature in the joining area. It is imperative to gain knowledge about the actual temperature close to the joining area and its influence on the hybrid specimen. The overarching goal of the investigations is to derive design guidelines for the M-HPDC process in order to expand its applicability to complex geometries. Extensive test series are currently carried out for this purpose. The first results of these investigations will be presented.

Keywords

Hybrid Multi-Component Process combination Joining method Temperature influence 

Notes

Acknowledgements

The authors would like to thank the German Research Foundation DFG for the kind support within the Cluster of Excellence “Integrative Production Technology for High-Wage Countries”.

References

  1. 1.
    Vollrath, K., Structural - mehr Ressourceneffizienz beim Automobil. Giesserei. 99: p. 60–62.Google Scholar
  2. 2.
    Fuchs, M., Vorteile von hybriden Druckguss-Spritzguss-Komponenten, W. AG, Editor. N.N.Google Scholar
  3. 3.
    KIEFER, S., Hybrid-Frontend vereinigt gegensätze. Kunststoffe, 2004. 94(11): p. 131–132.Google Scholar
  4. 4.
    Lohse, H., Thermoplastische Systemlösungen im Automobilbau. adhäsion KLEBEN & DICHTEN, 2005. 49(9): p. 22–27.Google Scholar
  5. 5.
    Schettler, F., Montagetechnologien im Leichtbau. Kunststoffe, 03/2013.Google Scholar
  6. 6.
    Priyadarshi, A.K., et al., Manufacturing multi-material articulated plastic products using in-mold assembly. The International Journal of Advanced Manufacturing Technology, 2007. 32(3): p. 350–365.Google Scholar
  7. 7.
    Bürkle, E. and H. Wobbe, Kombinationstechnologien auf Basis des Spritzgießverfahrens. 2016: Carl Hanser Verlag GmbH Co KG.Google Scholar
  8. 8.
    Michaeli, W. and W.-M. Hoffmann, Hybride Verbindungen. Kunststoffe, 2009. 99(6).Google Scholar
  9. 9.
    Michaeli, W. and C. Lettowsky, Sonderverfahren des Spritzgießens, in Medizintechnik: Life Science Engineering, E. Wintermantel and S.-W. Ha, Editors. 2009, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 597–639.Google Scholar
  10. 10.
    Brecher, C., S. Kozielski, and L. Schapp, Integrative Produktionstechnik für Hochlohnländer. 2011: Springer.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Patrick Messer
    • 1
    Email author
  • Arthur Bulinger
    • 1
  • Uwe Vroomen
    • 1
  • Andreas Bührig-Polaczek
    • 1
  1. 1.Foundry-Institute, RWTH Aachen UniversityAachenGermany

Personalised recommendations