Advertisement

Light Metals 2019 pp 1533-1538 | Cite as

Acoustic Cavitation Measurements and Modeling in Liquid Aluminum

  • Iakovos TzanakisEmail author
  • Gerard Serge Bruno Lebon
  • Tungky Subroto
  • Dmitry Eskin
  • Koulis Pericleous
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)

Abstract

The quantification of acoustic pressures in liquid metals is of paramount interest for the optimization of ultrasonic melt treatment (UST) of large volumes. Until recently, the measurements of acoustic pressure and cavitation intensity in a melt were cumbersome and unreliable due to the high temperatures and the lack of suitable instruments. These difficulties imposed strict limitations on the experimental and numerical investigation of cavitation and bubble dynamics within liquid metals. In recent years, our group used a unique calibrated high temperature cavitometer to measure cavitation activity and acoustic pressures in liquid aluminum. Phenomena such as acoustic attenuation, shielding, and cavitation intensity have been studied. These measurements were also used to validate a non-linear acoustic numerical model applicable to flow in bubbly liquids subject to acoustic cavitation. Both experimental and numerical characterization of the acoustic and flow fields provides a powerful tool to optimize cavitation processing in liquid metals.

Keywords

Acoustic pressure Cavitation intensity Ultrasonic melt processing Aluminum 

Notes

Acknowledgements

Financial support from the UK Engineering and Physical Sciences Research Council (EPSRC) through grants UltraMelt2 (EP/R011001/1, EP/R011044/1, and EP/R011095/1) and LiME Hub (EP/N007638/1) is gratefully acknowledged.

References

  1. 1.
    G.I. Eskin, D.G. Eskin “Ultrasonic Treatment of Light Alloy Melts” Second Edition, CRC Press, 2015.Google Scholar
  2. 2.
    D.G. Eskin, I. Tzanakis, F. Wang, G.S.B. Lebon, K. Pericleous, P.D. Lee, T. Connolley, J. Mi, Fundamental studies of ultrasonic melt processing, in: Proc. 6th Decenn. Int. Conf. Solidif. Process., Old Windsor, UK, 2017: pp. 546–549.Google Scholar
  3. 3.
    D.G. Eskin, K. Al-Helal, I. Tzanakis, “Application of a plate sonotrode to ultrasonic degassing of aluminum melt”, J. Mater. Process. Technol. 222 (2015) 148–154.Google Scholar
  4. 4.
    I. Tzanakis, W.W. Xu, D.G. Eskin, P.D. Lee, N. Kotsovinos, “In situ observation and analysis of ultrasonic capillary effect in molten”, Ultrason. Sonochem. 27 (2015) 72–80.Google Scholar
  5. 5.
    T.V. Atamanenko, D.G. Eskin, L. Zhang, L. Katgerman, “Criteria of grain refinement induced by ultrasonicmelt treatment of aluminum alloys containing Zr and Ti”, Metall. Mater. Trans. A 41A (2010) 2056–2066.Google Scholar
  6. 6.
    F. Wang, I. Tzanakis, D. Eskin, J. Mi, T. Connolley “In situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys” Ultrasonics - Sonochemistry 39 (2017) 66–76.Google Scholar
  7. 7.
    I. Tzanakis, G.S.B. Lebon, D.G. Eskin, K.A. Pericleous “Characterisation of the ultrasonic acoustic spectrum and pressure field in aluminium melt with an advanced cavitometer” Journal of Materials Processing Technology 229 (2016) 582–586.Google Scholar
  8. 8.
    E. Neppiras. “Acoustic cavitation series: part one: Acoustic cavitation: an introduction”, Ultrasonics 22 (1984) 25–28.Google Scholar
  9. 9.
    D.J. Flannigan, K.S. Suslick, “Plasma formation and temperature measurement during single-bubble cavitation”. Nature 434 (2005) 52–55.Google Scholar
  10. 10.
    I. Tzanakis, D.G. Eskin, A. Georgoulas, D. Fytanidis, “Incubation pit analysis and calculation of the hydrodynamic impact pressure from the implosion of an acoustic cavitation bubble”, Ultrason. Sonochem. 21 (2014) 866–878.Google Scholar
  11. 11.
    A. Phillipp, W. Lauterborn, “Cavitation erosion by single laser-produced bubbles” J. Fluid Mech. (1998), vol. 361, pp. 75–116.Google Scholar
  12. 12.
    A. Gedanken, “Using sonochemistry for the fabrication of nanomaterials.” Ultrason. Sonochem. 11 (2004) 47–55.Google Scholar
  13. 13.
    I. Tzanakis, G.S.B. Lebon, D.G. Eskin, K.A. Pericleous “Optimization of the Ultrasonic Processing in a Melt Flow” Light Metals 2016, chapter 141.Google Scholar
  14. 14.
    G.S.B. Lebon, I. Tzanakis, D.G. Eskin, K.A. Pericleous WA “High-Order Acoustic Cavitation Model for the Treatment of a Moving Liquid Metal Volume” In: Nastac L. et al. (eds) CFD Modeling and Simulation in Materials Processing 2016. The Minerals, Metals & Materials Series. Springer, Cham.Google Scholar
  15. 15.
    S. Komarov, K. Oda, Y. Ishiwata, N. Dezhkunov. Characterization of acoustic cavitation in water and molten aluminum alloy, Ultrasonics Sonochemistry 20 (2013) 754–761.Google Scholar
  16. 16.
    I. Tzanakis, M. Hodnett, G.S.B. Lebon, N. Dezhkunov, D.G. Eskin. Calibration and performance assessment of an innovative high-temperature cavitometer, Sensors and Actuators A: Physical 240 (2016) 57–69.Google Scholar
  17. 17.
    I. Tzanakis, G.S.B. Lebon, D.G. Eskin, K.A. Pericleous, Characterizing the cavitation development and acoustic spectrum in various liquids, Ultrason. Sonochem. 34 (2017) 651–662.Google Scholar
  18. 18.
    I. Tzanakis, G.S.B. Lebon, D.G. Eskin, K. Pericleous. Investigation of the factors influencing cavitation intensity during the ultrasonic treatment of molten aluminium, Materials and Design 90 (2016) 979–983.Google Scholar
  19. 19.
    G.S.B. Lebon, I. Tzanakis, G. Djambazov, K. Pericleous, D.G. Eskin, Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model, Ultrason. Sonochem. 37 (2017) 660–668.  https://doi.org/10.1016/j.ultsonch.2017.02.031.
  20. 20.
    G.S.B. Lebon, I. Tzanakis, K. Pericleous, D. Eskin, Experimental and numerical investigation of acoustic pressures in different liquids, Ultrason. Sonochem. 42 (2018) 411–421.  https://doi.org/10.1016/j.ultsonch.2017.12.002.
  21. 21.
    O. Louisnard, A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation, Ultrason. Sonochem. 19 (2012) 56–65.  https://doi.org/10.1016/j.ultsonch.2011.06.007.
  22. 22.
    W.W. Xu, I. Tzanakis, P. Srirangam, S. Terzi, W. Mirihanage, D.G. Eskin, A.J. Bodey, P. Lee, Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al–10Cu melts, Ultrason. Sonochem. 31 (2016) 355–361.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Iakovos Tzanakis
    • 1
    • 2
    Email author
  • Gerard Serge Bruno Lebon
    • 3
    • 4
  • Tungky Subroto
    • 3
  • Dmitry Eskin
    • 3
    • 5
  • Koulis Pericleous
    • 4
  1. 1.Faculty of Technology, Design and EnvironmentOxford Brookes UniversityOxfordUK
  2. 2.Department of MaterialsUniversity of OxfordOxfordUK
  3. 3.Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University LondonUxbridgeUK
  4. 4.Computational Science and Engineering GroupUniversity of GreenwichLondonUK
  5. 5.Tomsk State UniversityTomskRussia

Personalised recommendations