Advertisement

Potential Hazards of Nanoparticles

  • Hoda Jafarizadeh-Malmiri
  • Zahra Sayyar
  • Navideh Anarjan
  • Aydin Berenjian
Chapter

Abstract

Recent developments in the design of advanced materials have furthered interest in the commercialization of new technologies. So the increased production of nanomaterials has increased concerns about their effects on human and environmental health. The evidence for health risks of nanoparticles has been demonstrated over the last decade, yet it is unclear if metal nanoparticles cause effects directly or indirectly. This chapter gives a brief review on the toxicology pathways, recommendations and methods for screening hazard testing of nanoparticles.

References

  1. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M. Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol. 2005;1(1):47–53.CrossRefGoogle Scholar
  2. Assa F, Jafarizadeh-Malmiri H, Anarjan N, Berenjian A, Ghasemi Y. Applications of chitosan nanoparticles in active biodegradable and sustainable food packaging. In: Kale SA, Durai PRT, Prabakar K, editors. Renewable energy and sustainable development. Hauppauge: Nova Science Publishers; 2015.Google Scholar
  3. Auffan M, Rose J, Orsiere T, De Meo M, Thill A, Zeyons O, Proux O, Masion A, Chaurand P, Spalla O. CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology. 2009;3(2):161–71.CrossRefGoogle Scholar
  4. Bailey M, Roy M. Annexe E. clearance of particles from the respiratory tract. Ann ICRP. 1994;24(1–3):301–413.CrossRefGoogle Scholar
  5. Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, Dreher KL, Goering PL, Goldberg AM, Kulinowski KM. Meeting report: hazard assessment for nanoparticles—report from an interdisciplinary workshop. Environ Health Perspect. 2007;115(11):1654.CrossRefGoogle Scholar
  6. Beyerle A, Schulz H, Kissel T, Stoeger T. Screening strategy to avoid toxicological hazards of inhaled nanoparticles for drug delivery: the use of a-quartz and nano zinc oxide particles as benchmark. J Phys Conf. Ser. 2009;151:012034: IOP PublishingCrossRefGoogle Scholar
  7. Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E. In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol. 2012;2012:293784.CrossRefGoogle Scholar
  8. Borm PJ, Kreyling W. Toxicological hazards of inhaled nanoparticles—potential implications for drug delivery. J Nanosci Nanotechnol. 2004;4(5):521–31.CrossRefGoogle Scholar
  9. Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3(1):11.CrossRefGoogle Scholar
  10. Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC. Air pollution and cardiovascular disease. Circulation. 2004;109(21):2655–71.CrossRefGoogle Scholar
  11. Buxton DB, Lee SC, Wickline SA, Ferrari M. Recommendations of the National Heart, Lung, and Blood Institute Nanotechnology Working Group. Circulation. 2003;108(22):2737–42.CrossRefGoogle Scholar
  12. Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–71.CrossRefGoogle Scholar
  13. Chalupa DC, Morrow PE, Oberdörster G, Utell MJ, Frampton MW. Ultrafine particle deposition in subjects with asthma. Environ Health Perspect. 2004;112(8):879.CrossRefGoogle Scholar
  14. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133.CrossRefGoogle Scholar
  15. Donaldson K, Tran CL. Inflammation caused by particles and fibers. Inhal Toxicol. 2002;14(1):5–27.CrossRefGoogle Scholar
  16. Driscoll KE, Carter JM, Borm PJ. Antioxidant defense mechanisms and the toxicity of fibrous and nonfibrous particles. Inhal Toxicol. 2002;14(1):101–18.CrossRefGoogle Scholar
  17. Drobne D, Jemec A, Tkalec ŽP. In vivo screening to determine hazards of nanoparticles: nanosized TiO2. Environ Pollut. 2009;157(4):1157–64.CrossRefGoogle Scholar
  18. Fadel TR, Steevens JA, Thomas TA, Linkov I. The challenges of nanotechnology risk management. Nano Today. 2015;10(1):6–10.CrossRefGoogle Scholar
  19. Forbe T, García M, Gonzalez E. Potential risks of nanoparticles. Food Sci Technol (Campinas). 2011;31(4):835–42.CrossRefGoogle Scholar
  20. Foss Hansen S, Larsen BH, Olsen SI, Baun A. Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology. 2007;1(3):243–50.CrossRefGoogle Scholar
  21. Garcia-Reyero N, Kennedy AJ, Escalon BL, Habib T, Laird JG, Rawat A, Wiseman S, Hecker M, Denslow N, Steevens JA. Differential effects and potential adverse outcomes of ionic silver and silver nanoparticles in vivo and in vitro. Environ Sci Technol. 2014;48(8):4546–55.CrossRefGoogle Scholar
  22. Gehr P, Heyder J. Particle-lung interactions. Boca Raton: CRC Press; 2000.CrossRefGoogle Scholar
  23. Guadagnini R, Moreau K, Hussain S, Marano F, Boland S. Toxicity evaluation of engineered nanoparticles for medical applications using pulmonary epithelial cells. Nanotoxicology. 2015;9(suppl 1):25–32.CrossRefGoogle Scholar
  24. Gurr J-R, Wang AS, Chen C-H, Jan K-Y. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology. 2005;213(1):66–73.CrossRefGoogle Scholar
  25. Howard J. Current intelligence bulletin 65: occupational exposure to carbon nanotubes and nanofibers. DHHS (NIOSH) Publication. 2013;2013:145.Google Scholar
  26. Hristozov D, Malsch I. Hazards and risks of engineered nanoparticles for the environment and human health. Sustainability. 2009;1(4):1161–94.CrossRefGoogle Scholar
  27. Kavlock R, Dix D. Computational toxicology as implemented by the US EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk. J Toxicol Environ Health B Crit Rev. 2010;13(2–4):197–217.CrossRefGoogle Scholar
  28. Khan FH. Chemical hazards of nanoparticles to human and environment (a review). Orient J Chem. 2014;29(4):1399–408.CrossRefGoogle Scholar
  29. Kreyling WG, Semmler M, Möller W. Dosimetry and toxicology of ultrafine particles. J Aerosol Med. 2004;17(2):140–52.CrossRefGoogle Scholar
  30. Kreyling WG, Semmler-Behnke M, Chaudhry Q. A complementary definition of nanomaterial. Nano Today. 2010;5(3):165–8.CrossRefGoogle Scholar
  31. Lee JW, Won E-J, Raisuddin S, Lee J-S. Significance of adverse outcome pathways in biomarker-based environmental risk assessment in aquatic organisms. J Environ Sci. 2015;35:115–27.CrossRefGoogle Scholar
  32. Leite PEC, Pereira MR, Granjeiro JM. Hazard effects of nanoparticles in central nervous system: searching for biocompatible nanomaterials for drug delivery. Toxicol In Vitro. 2015;29(7):1653–60.CrossRefGoogle Scholar
  33. Liu Y, Tourbin M, Lachaize S, Guiraud P. Nanoparticles in wastewaters: hazards, fate and remediation. Powder Technol. 2014;255:149–56.CrossRefGoogle Scholar
  34. Masciangioli T, Zhang W-X. Peer reviewed: environmental technologies at the nanoscale. Environ Sci Technol. 2003;37:102A–8A. ACS PublicationsCrossRefGoogle Scholar
  35. Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V. Safe handling of nanotechnology. Nature. 2006;444(7117):267–9.CrossRefGoogle Scholar
  36. Menzel F, Reinert T, Vogt J, Butz T. Investigations of percutaneous uptake of ultrafine TiO2 particles at the high energy ion nanoprobe LIPSION. Nucl Instrum Methods Phys Res B. 2004;219:82–6.CrossRefGoogle Scholar
  37. Mills NL, Törnqvist H, Robinson SD, Gonzalez M, Darnley K, MacNee W, Boon NA, Donaldson K, Blomberg A, Sandstrom T. Diesel exhaust inhalation causes vascular dysfunction and impaired endogenous fibrinolysis. Circulation. 2005;112(25):3930–6.CrossRefGoogle Scholar
  38. Nel A. Air pollution-related illness: effects of particles. Science. 2005;308(5723):804–6.CrossRefGoogle Scholar
  39. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7.CrossRefGoogle Scholar
  40. Oberdörster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med. 2010;267(1):89–105.CrossRefGoogle Scholar
  41. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2005a;2(1):8.CrossRefGoogle Scholar
  42. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005b;113(7):823.CrossRefGoogle Scholar
  43. Reeves JF, Davies SJ, Dodd NJ, Jha AN. Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res. 2008;640(1):113–22.CrossRefGoogle Scholar
  44. Reijnders L. Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. J Clean Prod. 2006;14(2):124–33.CrossRefGoogle Scholar
  45. Roco MC. National nanotechnology initiative-past, present, future. In: Goddard WA, et al., editors. Handbook on nanoscience, engineering and technology. Boca Raton and London: CRC, Taylor and Francis; 2007. 3.1–3.Google Scholar
  46. Royal Society and Royal Academy of Engineering. Nanoscience and nanotechnologies: opportunities and uncertainties. London: Royal Society and Royal Academy of Engineering; 2004.Google Scholar
  47. Salata OV. Applications of nanoparticles in biology and medici. J Nanobiotechnology. 2004;2(1):3.CrossRefGoogle Scholar
  48. Schmidt CW. Nanotechnology-related environment, health, and safety research: examining the national strategy. Environ Health Perspect. 2009;117(4):A158.CrossRefGoogle Scholar
  49. Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 2005;289(5):L698–708.CrossRefGoogle Scholar
  50. Soenen SJ, Parak WJ, Rejman J, Manshian B. (Intra) cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev. 2015;115(5):2109–35.CrossRefGoogle Scholar
  51. Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P. Poly (alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev. 2003;55(4):519–48.CrossRefGoogle Scholar
  52. Warheit DB. Nanoparticles: health impacts? Mater Today. 2004;7(2):32–5.CrossRefGoogle Scholar
  53. Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM. Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett. 2007;171(3):99–110.CrossRefGoogle Scholar
  54. Warheit DB, Sayes CM, Reed KL, Swain KA. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther. 2008;120(1):35–42.CrossRefGoogle Scholar
  55. Wiesner M, Bottero J-Y. Environmental nanotechnology. New York: McGraw-Hill Professional Publishing; 2007.Google Scholar
  56. Zhu X, Chang Y, Chen Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere. 2010;78(3):209–15.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hoda Jafarizadeh-Malmiri
    • 1
  • Zahra Sayyar
    • 1
  • Navideh Anarjan
    • 2
  • Aydin Berenjian
    • 3
  1. 1.Faculty of Chemical Engineering, East AzarbaijanSahand University of TechnologyTabrizIran
  2. 2.Faculty of Chemical Engineering, East AzarbaijanIslamic Azad University Tabriz BranchTabrizIran
  3. 3.Faculty of EngineeringThe University of WaikatoHamiltonNew Zealand

Personalised recommendations