Advertisement

Nano-encapsulation for Nutrition Delivery

  • Hoda Jafarizadeh-Malmiri
  • Zahra Sayyar
  • Navideh Anarjan
  • Aydin Berenjian
Chapter

Abstract

This chapter is aiming to discuss nanoencapsulation of various water-insoluble materials. Nanoencapsulation is a technique to improve the stability of insoluble bioactive compounds in water. Nanoencapsulation not only enhances the aqueous solubility and stability of the bioactive compounds but also provides controlled release to protect their biological/pharmacological activity in the body. At the same time, bioavailability improves by controlling the release, and thus the probability of repeated use can be reduced. Various techniques are used for the nanoencapsulation of bioactive compounds for improving their release in the target site. The most commonly used techniques for compound encapsulation are nanoprecipitation, nanoemulsification, coacervation, spray drying, electrospinning and electrospray, solvent evaporation and other methods that are reviewed in this chapter.

References

  1. Abbas S, Da Wei C, Hayat K, Xiaoming Z. Ascorbic acid: microencapsulation techniques and trends—a review. Food Rev Int. 2012;28(4):343–74.CrossRefGoogle Scholar
  2. Aghbashlo M, Mobli H, Madadlou A, Rafiee S. Integrated optimization of fish oil microencapsulation process by spray drying. J Microencapsul. 2012;29(8):790–804.PubMedCrossRefGoogle Scholar
  3. Ai H, Jones SA, de Villiers MM, Lvov YM. Nano-encapsulation of furosemide microcrystals for controlled drug release. J Control Release. 2003;86(1):59–68.PubMedCrossRefGoogle Scholar
  4. Amjadi I, Rabiee M, Hosseini M, Sefidkon F, Mozafari M. Nanoencapsulation of hypericum perforatum and doxorubicin anticancer agents in PLGA nanoparticles through double emulsion technique. Micro Nano Lett. 2013;8(5):243–7.CrossRefGoogle Scholar
  5. Anandharamakrishnan C. Techniques for nanoencapsulation of food ingredients. Berlin: Springer; 2014.CrossRefGoogle Scholar
  6. Anarjan N, Ghaz Jahanian MA, Sayyar Z, Mohamadlou M, Najafi S, Pazhohnia Z, Jaberi N. Production of nanodispersions by solvent-displasment technique. In: Jafarizadeh-Malmiri H, Berenjian A, editors. High value processing technologies. Hauppauge: Nova Science Publishers; 2016.Google Scholar
  7. Augustin MA, Sanguansri L, Lockett T. Nano-and micro-encapsulated systems for enhancing the delivery of resveratrol. Ann N Y Acad Sci. 2013;1290(1):107–12.PubMedCrossRefGoogle Scholar
  8. Bhushani JA, Anandharamakrishnan C. Electrospinning and electrospraying techniques: potential food based applications. Trend Food Sci Technol. 2014;38(1):21–33.CrossRefGoogle Scholar
  9. Butstraen C, Salaün F. Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydr Polym. 2014;99:608–16.PubMedCrossRefGoogle Scholar
  10. Calvo P, Remuñan-López C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res. 1997a;14(10):1431–6.PubMedCrossRefGoogle Scholar
  11. Calvo P, Remuñan-López C, Vila-Jato JL, Alonso M. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997b;63(1):125–32.CrossRefGoogle Scholar
  12. Carneiro HC, Tonon RV, Grosso CR, Hubinger MD. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J Food Eng. 2013;115(4):443–51.CrossRefGoogle Scholar
  13. Cerqueira MA, Pinheiro AC, Silva HD, Ramos PE, Azevedo MA, Flores-López ML, Rivera MC, Bourbon AI, Ramos OL, Vicente AA. Design of bio-nanosystems for oral delivery of functional compounds. Food Eng Rev. 2014;6(1–2):1–19.CrossRefGoogle Scholar
  14. Dang S, Gupta S, Bansal R, Ali J, Gabrani R. Nano-encapsulation of a natural polyphenol, green tea catechins: way to preserve its antioxidative potential. In: Free radicals in human health and disease. Springer; 2015. p. 397–415.Google Scholar
  15. Dupeyrón D, González M, Sáez V, Ramón J, Rieumont J. Nano-encapsulation of protein using an enteric polymer as carrier. In: IEE Proceedings-Nanobiotechnol, vol. 152. IET; 2005; p. 165–168.Google Scholar
  16. Esfanjani AF, Jafari SM. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf B: Biointerfaces. 2016;146:532–43.CrossRefGoogle Scholar
  17. Fathi M, Mozafari M-R, Mohebbi M. Nanoencapsulation of food ingredients using lipid based delivery systems. Trend Food Sci Technol. 2012;23(1):13–27.CrossRefGoogle Scholar
  18. Fathi M, Martín Á, McClements DJ. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trend Food Sci Technol. 2014;39(1):18–39.CrossRefGoogle Scholar
  19. Garti N. Delivery and controlled release of bioactives in foods and nutraceuticals. Amsterdam: Elsevier; 2008.Google Scholar
  20. Ghayempour S, Montazer M. Micro/nanoencapsulation of essential oils and fragrances: focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. J Microencapsul. 2016;33(6):497–510.PubMedCrossRefGoogle Scholar
  21. Gutiérrez FJ, Albillos SM, Casas-Sanz E, Cruz Z, García-Estrada C, García-Guerra A, García-Reverter J, García-Suárez M, Gatón P, González-Ferrero C. Methods for the nanoencapsulation of β-carotene in the food sector. Trend Food Sci Technol. 2013;32(2):73–83.CrossRefGoogle Scholar
  22. Hădărugă N, Hădărugă D, Bandur G, Riviş A, Pârvu D, Lupea A. Protection and controlled release of fatty acids and essential oils by nanoencapsulation in cyclodextrins (a review). J Agroalimentary Process Technol. 2008;14(2):381–9.Google Scholar
  23. Jafari SM, Assadpoor E, Bhandari B, He Y. Nano-particle encapsulation of fish oil by spray drying. Food Res Int. 2008;41(2):172–83.CrossRefGoogle Scholar
  24. Jarunglumlert T, Nakagawa K. Spray drying of casein aggregates loaded with β-carotene: influences of acidic conditions and storage time on surface structure and encapsulation efficiencies. Dry Technol. 2013;31(13–14):1459–65.CrossRefGoogle Scholar
  25. Jaworek A. Electrostatic micro-and nanoencapsulation and electroemulsification: a brief review. J Microencapsul. 2008;25(7):443–68.PubMedCrossRefGoogle Scholar
  26. Jung EY, Hong KB, Son HS, Suh HJ, Park Y. Effect of layer-by-layer (LbL) encapsulation of nano-emulsified fish oil on their digestibility ex vivo and skin permeability in vitro. Prev Nutr Food Sci. 2016;21(2):85.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Katouzian I, Jafari SM. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trend Food Sci Technol. 2016;53:34–48.CrossRefGoogle Scholar
  28. Livney YD. Nanostructured delivery systems in food: latest developments and potential future directions. Curr Opinion Food Sci. 2015;3:125–35.CrossRefGoogle Scholar
  29. Luengo J, Weiss B, Schneider M, Ehlers A, Stracke F, König K, Kostka K-H, Lehr C-M, Schaefer U. Influence of nanoencapsulation on human skin transport of flufenamic acid. Skin Pharm Physiol. 2006;19(4):190–7.CrossRefGoogle Scholar
  30. Luo Y, Zhou X. Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process. J Polym Sci Part A Polym Chem. 2004;42(9):2145–54.CrossRefGoogle Scholar
  31. Mozafari MR, Flanagan J, Matia-Merino L, Awati A, Omri A, Suntres ZE, Singh H. Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. J Sci Food Agric. 2006;86(13):2038–45.CrossRefGoogle Scholar
  32. Nagavarma B, Yadav HK, Ayaz A, Vasudha L, Shivakumar H. Different techniques for preparation of polymeric nanoparticles-a review. Asian J Pharm Clin Res. 2012;5(3):16–23.Google Scholar
  33. Neo YP, Ray S, Jin J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Liu D, Quek SY. Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: a physicochemical study based on zein-gallic acid. Food Chem. 2013;136(2):1013–21.PubMedCrossRefGoogle Scholar
  34. Noronha CM, Granada AF, de Carvalho SM, Lino RC, de OB Maciel MV, Barreto PLM. Optimization of α-tocopherol loaded nanocapsules by the nanoprecipitation method. Ind Crops Prod. 2013;50:896–903.CrossRefGoogle Scholar
  35. Nuruzzaman M, Rahman MM, Liu Y, Naidu R. Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem. 2016;64(7):1447–83.PubMedCrossRefGoogle Scholar
  36. O’Connor G, Gleeson LE, Fagan-Murphy A, Cryan S-A, O’Sullivan MP, Keane J. Sharpening nature’s tools for efficient tuberculosis control: a review of the potential role and development of host-directed therapies and strategies for targeted respiratory delivery. Adv Drug Deliv Rev. 2016;102:33–54.PubMedCrossRefGoogle Scholar
  37. Pandey R, Ahmad Z, Sharma S, Khuller G. Nano-encapsulation of azole antifungals: potential applications to improve oral drug delivery. Int J Pharm. 2005;301(1):268–76.PubMedCrossRefGoogle Scholar
  38. Quintanilla-Carvajal MX, Camacho-Díaz BH, Meraz-Torres LS, Chanona-Pérez JJ, Alamilla-Beltrán L, Jimenéz-Aparicio A, Gutiérrez-López GF. Nanoencapsulation: a new trend in food engineering processing. Food Eng Rev. 2010;2(1):39–50.CrossRefGoogle Scholar
  39. Ramachandraiah K, Han SG, Chin KB. Nanotechnology in meat processing and packaging: potential applications—a review. Asian-Australasian J Anim Sci. 2015;28(2):290.CrossRefGoogle Scholar
  40. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006a;2(1):8–21.PubMedCrossRefGoogle Scholar
  41. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation II. Biomedical applications and current status of peptide and protein nanoparticulate delivery systems. Nanomedicine. 2006b;2(2):53–65.PubMedCrossRefGoogle Scholar
  42. Sohani OR. Nanoencapsulation system for delivery of protein and peptide—a review. J Biomed Pharm Res. 2013;2(2):58–64.Google Scholar
  43. Stijnman AC, Bondar I, Tromp RH. Electrospinning of food-grade polysaccharides. Food Hydrocoll. 2011;25(5):1393–8.CrossRefGoogle Scholar
  44. Sumithra M, Raaja NV. Micro-encapsulation and nano-encapsulation of denim fabrics with herbal extracts. Indian J Fibre Text Res. 2012;37(4):321–5.Google Scholar
  45. Xiao J, Cao Y, Huang Q. Edible nanoencapsulation vehicles for oral delivery of phytochemicals: a perspective paper. J Agric Food Chem. 2017;65(32):6727–35.PubMedCrossRefGoogle Scholar
  46. Xing F, Cheng G, Yi K, Ma L. Nanoencapsulation of capsaicin by complex coacervation of gelatin, acacia, and tannins. J Appl Polym Sci. 2005;96(6):2225–9.CrossRefGoogle Scholar
  47. Yadav SC, Kumari A, Yadav R. Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation. Peptides. 2011;32(1):173–87.PubMedCrossRefGoogle Scholar
  48. Zhu F. Encapsulation and delivery of food ingredients using starch based systems. Food Chem. 2017;229:542–52.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hoda Jafarizadeh-Malmiri
    • 1
  • Zahra Sayyar
    • 1
  • Navideh Anarjan
    • 2
  • Aydin Berenjian
    • 3
  1. 1.Faculty of Chemical Engineering, East AzarbaijanSahand University of TechnologyTabrizIran
  2. 2.Faculty of Chemical Engineering, East AzarbaijanIslamic Azad University Tabriz BranchTabrizIran
  3. 3.Faculty of EngineeringThe University of WaikatoHamiltonNew Zealand

Personalised recommendations