Advertisement

A Closed-Form Solution of Rotation Invariant Spherical Harmonic Features in Diffusion MRI

  • Mauro ZucchelliEmail author
  • Samuel Deslauriers-Gauthier
  • Rachid Deriche
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

Rotation invariant features are an indispensable tool for characterizing diffusion Magnetic Resonance Imaging (MRI) and in particular for brain tissue microstructure estimation. In this work, we propose a new mathematical framework for efficiently calculating a complete set of such invariants from any spherical function. Specifically, our method is based on the spherical harmonics series expansion of a given function of any order and can be applied directly to the resulting coefficients by performing a simple integral operation analytically. This enable us to derive a general closed-form equation for the invariants. We test our invariants on the diffusion MRI fiber orientation distribution function obtained from the diffusion signal both in-vivo and in synthetic data. Results show how it is possible to use these invariants for characterizing the white matter using a small but complete set of features.

Keywords

Diffusion MRI Rotation invariant Gaunt coefficients Spherical harmonics 

Notes

Acknowledgements

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC Advanced Grant agreement No 694665 : CoBCoM—Computational Brain Connectivity Mapping). Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

References

  1. 1.
    Bloy, L., Verma, R.: Demons registration of high angular resolution diffusion images. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1013–1016 (April 2010)Google Scholar
  2. 2.
    Caruyer, E., Verma, R.: On facilitating the use of hardi in population studies by creating rotation-invariant markers. Med. Image Anal. 20(1), 87–96 (2015)CrossRefGoogle Scholar
  3. 3.
    Dell’Acqua, F., Scifo, P., Rizzo, G., Catani, M., Simmons, A., Scotti, G., Fazio, F.: A modified damped richardson-lucy algorithm to reduce isotropic background effects in spherical deconvolution. Neuroimage 49(2), 1446–1458 (2010)CrossRefGoogle Scholar
  4. 4.
    Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Magn. Reson. Med. 58(3), 497–510 (2007)CrossRefGoogle Scholar
  5. 5.
    Ehrenborg, R., Rota, G.C.: Apolarity and canonical forms for homogeneous polynomials. Eur. J. Comb. 14(3), 157–181 (1993)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ghosh, A., Papadopoulo, T., Deriche, R.: Generalized invariants of a 4th order tensor: building blocks for new biomarkers in dMRI (2012)Google Scholar
  7. 7.
    Homeier, H.H., Steinborn, E.: Some properties of the coupling coefficients of real spherical harmonics and their relation to gaunt coefficients. J. Mol. Struct. THEOCHEM 368, 31–37 (1996) (Proceedings of the Second Electronic Computational Chemistry Conference)CrossRefGoogle Scholar
  8. 8.
    Kaden, E., Kelm, N.D., Carson, R.P., Does, M.D., Alexander, D.C.: Multi-compartment microscopic diffusion imaging. NeuroImage 139, 346–359 (2016)CrossRefGoogle Scholar
  9. 9.
    Kakarala, R., Mao, D.: A theory of phase-sensitive rotation invariance with spherical harmonic and moment-based representations. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 105–112 (June 2010)Google Scholar
  10. 10.
    Kondor, R.: A novel set of rotationally and translationally invariant features for images based on the non-commutative bispectrum (2007). arXiv:cs/0701127
  11. 11.
    Negrinho, R.M.P., Aguiar, P.M.Q.: Shape representation via elementary symmetric polynomials: a complete invariant inspired by the bispectrum. In: 2013 IEEE International Conference on Image Processing, pp. 3518–3522 (Sept 2013)Google Scholar
  12. 12.
    Novikov, D.S., Veraart, J., Jelescu, I.O., Fieremans, E.: Rotationally-invariant mapping of scalar and orientational metrics of neuronal microstructure with diffusion MRI. NeuroImage 174, 518–538 (2018)CrossRefGoogle Scholar
  13. 13.
    Papadopoulo, T., Ghosh, A., Deriche, R.: Complete set of invariants of a 4th order tensor: The 12 tasks of HARDI from ternary quartics. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2014, pp. 233–240. Springer International Publishing, Cham (2014)Google Scholar
  14. 14.
    Reisert, M., Kellner, E., Dhital, B., Hennig, J., Kiselev, V.G.: Disentangling micro from mesostructure by diffusion MRI: A bayesian approach. NeuroImage (2016)Google Scholar
  15. 15.
    Schwab, E., Çetingül, H.E., Afsari, B., Yassa, M.A., Vidal, R.: Rotation invariant features for HARDI. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) Information Processing in Medical Imaging, pp. 705–717. Springer, Berlin (2013)Google Scholar
  16. 16.
    Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., et al.: Advances in diffusion MRI acquisition and processing in the human connectome project. Neuroimage 80, 125–143 (2013)CrossRefGoogle Scholar
  18. 18.
    Tournier, J.D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)CrossRefGoogle Scholar
  19. 19.
    Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372CrossRefGoogle Scholar
  20. 20.
    Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation, pp. 216–226. Springer, Berlin (1979)CrossRefGoogle Scholar
  21. 21.
    Zucchelli, M., Descoteaux, M., Menegaz, G.: A generalized SMT-based framework for diffusion MRI microstructural model estimation. In: Computational Diffusion MRI, pp. 51–63. Springer (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mauro Zucchelli
    • 1
    Email author
  • Samuel Deslauriers-Gauthier
    • 1
  • Rachid Deriche
    • 1
  1. 1.Athena Project-Team, Inria Sophia Antipolis - MéditerranéeBiotFrance

Personalised recommendations