Return-to-Axis Probability Calculation from Single-Shell Acquisitions

  • Santiago Aja-FernándezEmail author
  • Antonio Tristán-Vega
  • Malwina Molendowska
  • Tomasz Pieciak
  • Rodrigo de Luis-García
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)


The Ensemble Average diffusion Propagator (EAP) provides relevant microstructural information and meaningful descriptive maps of the white matter previously obscured by traditional techniques like the Diffusion Tensor. The direct estimation of the EAP requires a dense sampling of the \({\mathbf {q}}\)-space data. Although alternative techniques have been proposed, all of them require a high number of gradients and several b-values to be calculated. Once the EAP is calculated scalar measures must be directly derived. In this work, we propose a method to drastically reduce the number of points needed for the estimation of one of the measures, the return-to-axis probability (RTAP), efficiently estimating the \({\mathbf {q}}\)-space diffusion measure from a single shell acquisition. The proposal avoids the calculation of the EAP assuming that the diffusion does not depend on the radial direction. By applying this assumption locally, we achieve closed-form expressions of the measure using information from only one b-value, compatible with acquisitions protocols used for HARDI. Results have shown that the measures are highly correlated with the same measures calculated with state-of-the-art EAP estimators and highly accelerated execution times.


Diffusion MRI RTAP Ensemble average diffusion propagator Microstructure HARDI 


  1. 1.
    Boscolo Galazzo, I., Brusini, L., Obertino, S., Zucchelli, M., Granziera, C., Menegaz, G.: On the viability of diffusion MRI-based microstructural biomarkers in ischemic stroke. Front. Neurosci. 12, 92 (2018)CrossRefGoogle Scholar
  2. 2.
    Brusini, L., Obertino, S., Zucchelli, M., Galazzo, I.B., Krueger, G., Granziera, C., Menegaz, G.: Assessment of mean apparent propagator-based indices as biomarkers of axonal remodeling after stroke. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, pp. 199–206. Springer International Publishing, Cham (2015)Google Scholar
  3. 3.
    Canales-Rodríguez, E.J., Melie-García, L., Iturria-Medina, Y.: Mathematical description of q-space in spherical coordinates: exact q-ball imaging. Magn. Reson. Med. 61(6), 1350–1367 (2009)CrossRefGoogle Scholar
  4. 4.
    Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion profile estimation from high angular resolution diffusion images: estimation and applications. Magn. Reson. Med. 56(2), 395–410 (2006)CrossRefGoogle Scholar
  5. 5.
    Descoteaux, M., Deriche, R., Le Bihan, D., Mangin, J.F., Poupon, C.: Diffusion propagator imaging: using Laplace’s equation and multiple shell acquisitions to reconstruct the diffusion propagator. In: International Conference on Information Processing in Medical Imaging, pp. 1–13. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Fick, R.H., Wassermann, D., Caruyer, E., Deriche, R.: MAPL: tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data. NeuroImage 134, 365–385 (2016)CrossRefGoogle Scholar
  7. 7.
    Hosseinbor, A.P., Chung, M.K., Wu, Y.C., Alexander, A.L.: Bessel Fourier orientation reconstruction (BFOR): an analytical diffusion propagator reconstruction for hybrid diffusion imaging and computation of q-space indices. NeuroImage 64, 650–670 (2013)CrossRefGoogle Scholar
  8. 8.
    Ning, L., Westin, C.F., Rathi, Y.: Estimating diffusion propagator and its moments using directional radial basis functions. IEEE Trans. Med. Imag. 34(10), 2058–2078 (2015)CrossRefGoogle Scholar
  9. 9.
    Özarslan, E., Koay, C., Basser, P.: Simple harmonic oscillator based estimation and reconstruction for one-dimensional q-space MR. Proc. Int. Soc. Mag. Reson. Med. 16, 35 (2008)zbMATHGoogle Scholar
  10. 10.
    Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., İrfanoğlu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013)CrossRefGoogle Scholar
  11. 11.
    Özarslan, E., Sepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31, 1086–1103 (2006)CrossRefGoogle Scholar
  12. 12.
    Tristan-Vega, A., Aja-Fernández, S., Westin, C.F.: Deblurring of probabilistic ODFs in quantitative diffusion MRI. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 932–935. IEEE (2012)Google Scholar
  13. 13.
    Tristán-Vega, A., Westin, C.F., Aja-Fernández, S.: Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging. NeuroImage 47(2), 638–650 (2009)CrossRefGoogle Scholar
  14. 14.
    Tristan-Vega, A., Westin, C.F., Aja-Fernandez, S.: A new methodology for the estimation of fiber populations in the white matter of the brain with the Funk-Radon transform. Neuroimage 49(2), 1301–1315 (2010)CrossRefGoogle Scholar
  15. 15.
    Tuch, D.S., Reese, T.G., Wiegell, M.R., Wedeen, V.J.: Diffusion MRI of complex neural architecture. Neuron 40, 885–895 (2003)CrossRefGoogle Scholar
  16. 16.
    Wu, Y.C., Field, A.S., Alexander, A.L.: Computation of diffusion function measures in q-space using magnetic resonance hybrid diffusion imaging. IEEE Trans. Med. Imag. 27(6), 858–865 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Santiago Aja-Fernández
    • 1
    Email author
  • Antonio Tristán-Vega
    • 1
  • Malwina Molendowska
    • 2
  • Tomasz Pieciak
    • 2
  • Rodrigo de Luis-García
    • 1
  1. 1.Laboratorio de Procesado de Imagen (LPI), E.T.S. Ingenieros de TelecomunicaciónValladolidSpain
  2. 2.AGH University of Science and TechnologyKrakowPoland

Personalised recommendations