Advertisement

Diffusion MRI Outside the Brain

  • Rita G. NunesEmail author
  • Luísa Nogueira
  • Andreia S. Gaspar
  • Nuno Adubeiro
  • Sofia Brandão
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

This manuscript provides an overview of recent developments in Diffusion-Weighted Imaging (DWI) outside the brain, focusing on liver, breast, prostate, muskuloskeletal (MSK) and cardiac applications. A general introduction to cross-cutting acquisition and image processing challenges is first provided. These often include short \(T_2\) relaxation times, the need to image a large field-of-view with the resulting complications in shimming the B0 field and achieving good fat suppression. Some of the strategies developed for dealing with motion, namely cardiac and respiratory motion are described. Specific sections are then presented for each of the aforementioned organs. A motivation for the clinical applicability of DWI is first provided, followed by specific image acquisition and processing considerations. Quantitative imaging is becoming standard in clinical practice, and the Apparent Diffusion Coefficient is routinely estimated in the liver, breast and prostate. Application of alternative signal models in these organs is being explored, including both the Intravoxel Incoherent Motion and Diffusion Kurtosis models. Ongoing efforts are focused on evaluating the potential clinical added value of the extra parameters and on improving their repeatability. MSK and cardiac DWI have shown potential for assessing pathological changes in fiber architecture, but further validation is required to enable application in the clinical setting.

Keywords

Diffusion-weighted MRI Liver Breast Prostate Muskuloskeletal system Cardiac Applications 

Notes

Ethics: Institutional review board approval was obtained for both breast (code CES 276/13) and prostate imaging (code 215/12 190/DEFI/195-CES).

References

  1. 1.
    Aliotta, E., Wu, H.H., Ennis, D.B.: Convex optimized diffusion encoding (CODE) gradient waveforms for minimum echo time and bulk motion-compensated diffusion-weighted MRI. Magn. Reson. Med. 77(2), 717–729 (2017)CrossRefGoogle Scholar
  2. 2.
    Anderson, A.W., Gore, J.C.: Analysis and correction of motion artifacts in diffusion weighted imaging. Magn. Reson. Med. 32(3), 379–87 (1994)CrossRefGoogle Scholar
  3. 3.
    Baliyan, V., Kordbacheh, H., Kambadakone, A., Guimaraes, A.R., Shenoy-Bhangle, A.: Diffusion weighted magnetic resonance imaging of liver: principles, clinical applications and recent updates. World J. Hepatol. 9(926), 1081–1091 (2017)Google Scholar
  4. 4.
    Barentsz, M.W., Taviani, V., Chang, J.M., Ikeda, D.M., Miyake, K.K., Banerjee, S., van den Bosch, M.A.A.J., Hargreaves, B.A., Daniel, B.L.: Assessment of tumor morphology on diffusion-weighted (DWI) breast MRI: diagnostic value of reduced field of view DWI. J. Magn. Reson. Imaging 42(6), 1656–1665 (2015)CrossRefGoogle Scholar
  5. 5.
    Bokacheva, L., Kaplan, J.B., Giri, D.D., Patil, S., Gnanasigamani, M., Nyman, C.G., Deasy, J.O., Morris, E.A., Thakur, S.B.: Intravoxel incoherent motion diffusion-weighted MRI at 3.0 T differentiates malignant breast lesions from benign lesions and breast parenchyma. J. Magn. Reson. Imaging 40(4), 813–823 (2014)CrossRefGoogle Scholar
  6. 6.
    Bolsterlee, B., Finni, T., D’Souza, A., Eguchi, J., Clarke, E.C., Herbert, R.D.: Three-dimensional architecture of the whole human soleus muscle in vivo. PeerJ 6, e4610 (2018).  https://doi.org/10.7717/peerj.4610CrossRefGoogle Scholar
  7. 7.
    Buck, A.K.W., Ding, Z., Elder, C.P., Towse, T.F., Damon, B.M.: Anisotropic smoothing improves DT-MRI-based muscle fiber tractography. PloS One 10(5), e0126953 (2015).  https://doi.org/10.1371/journal.pone.0126953CrossRefGoogle Scholar
  8. 8.
    Burakiewicz, J., Hooijmans, M.T., Webb, A.G., Verschuuren, J.J.G.M., Niks, E.H., Kan, H.E.: Improved olefinic fat suppression in skeletal muscle DTI using a magnitude-based dixon method. Magn. Reson. Med. 79(1), 152–159 (2018)CrossRefGoogle Scholar
  9. 9.
    Cakir, O., Arslan, A., Inan, N., Anik, Y., Sarisoy, T., Gumustas, S., Akansel, G.: Comparison of the diagnostic performances of diffusion parameters in diffusion weighted imaging and diffusion tensor imaging of breast lesions. Eur. J. Radiol. 82(12), 801–806 (2013)CrossRefGoogle Scholar
  10. 10.
    Chevallier, O., Zhou, N., He, J., Loffroy, R., Xiáng, Y., Wáng, J.: Removal of evidential motion-contaminated and poorly fitted image data improves IVIM diffusion MRI parameter scan-rescan reproducibility. Acta Radiologica p. [Epub ahead of print] (2018).  https://doi.org/10.1177/0284185118756949CrossRefGoogle Scholar
  11. 11.
    Choi, J.S.Y., Kim, M.J., Chung, Y.E., Kim, K.A.K.W., Lim, J.S., Park, M.S.: Comparison of breathhold, navigator-triggered, and free-breathing diffusion-weighted MRI for focal hepatic lesions. J. Magn. Reson. Imaging 38(1), 109–118 (2013)CrossRefGoogle Scholar
  12. 12.
    Coelho-Filho, O.R., Rickers, C., Kwong, R.Y., Jerosch-Herold, M.: MR myocardial perfusion imaging. Radiology 266(3), 701–715 (2013)CrossRefGoogle Scholar
  13. 13.
    Damon, B.M., Buck, A.K.W., Ding, Z.: Diffusion-tensor MRI based skeletal muscle fiber tracking. Imaging Med. 3(6), 675–687 (2011).  https://doi.org/10.2217/iim.11.60CrossRefGoogle Scholar
  14. 14.
    Delattre, B.M.A., Viallon, M., Wei, H., Zhu, Y.M., Feiweier, T., Pai, V.M., Wen, H., Croisille, P.: In vivo cardiac diffusion-weighted magnetic resonance imaging: quantification of normal perfusion and diffusion coefficients with intravoxel incoherent motion imaging. Investig. Radiol. 47(11), 662–670 (2012)CrossRefGoogle Scholar
  15. 15.
    Donati, O.F., Mazaheri, Y., Afaq, A., Vargas, H.A., Zheng, J., Moskowitz, C.S., Hricak, H., Akin, O.: Prostate cancer aggressiveness: assessment with whole-lesion histogram analysis of the apparent diffusion coefficient. Radiology 271(1), 143–152 (2014)CrossRefGoogle Scholar
  16. 16.
    Dong, H., Li, Y., Yu, K., Li, H.: Comparison of image quality and application values on different field-of-view diffusion-weighted imaging of breast cancer. Acta Radiol. 57(1), 19–24 (2016)CrossRefGoogle Scholar
  17. 17.
    Edelman, R.R., Gaa, J., Wedeen, V.J., Loh, E., Hare, J.M., Prasad, P., Li, W.: In vivo measurement of water diffusion in the human heart. Mag. Reson. Med. 32(3), 423–428 (1994)CrossRefGoogle Scholar
  18. 18.
    Errante, Y., Cirimele, V., Mallio, C.A., Di Lazzaro, V., Zobel, B.B., Quattrocchi, C.C.: Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation. Investig. Radiol. 49(10), 685–690 (2014)CrossRefGoogle Scholar
  19. 19.
    Eyal, E., Shapiro-Feinberg, M., Furman-Haran, E., Grobgeld, D., Golan, T., Itzchak, Y., Catane, R., Papa, M., Degani, H.: Parametric diffusion tensor imaging of the breast. Investig. Radiol. 47(5), 284–291 (2012)CrossRefGoogle Scholar
  20. 20.
    Ferreira, P.F., Kilner, P.J., McGill, L.A., Nielles-Vallespin, S., Scott, A.D., Ho, S.Y., McCarthy, K.P., Haba, M.M., Ismail, T.F., Gatehouse, P.D., de Silva, R., Lyon, A.R., Prasad, S.K., Firmin, D.N., Pennell, D.J.: In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy. J. Cardiovasc. Magn. Reson. 16(1), 87 (2014)CrossRefGoogle Scholar
  21. 21.
    Fieremans, E., Lemberskiy, G., Veraart, J., Sigmund, E.E., Gyftopoulos, S., Novikov, D.S.: In vivo measurement of membrane permeability and myofiber size in human muscle using time-dependent diffusion tensor imaging and the random permeable barrier model. NMR in Biomed. 30(3), [Epub ahead of print] (2017).  https://doi.org/10.1002/nbm.3612CrossRefGoogle Scholar
  22. 22.
    Filli, L., Ghafoor, S., Kenkel, D., Liu, W., Weiland, E., Andreisek, G., Frauenfelder, T., Runge, V.M., Boss, A.: Simultaneous multi-slice readout-segmented echo planar imaging for accelerated diffusion-weighted imaging of the breast. Eur. J. Radiol. 85(1), 274–278 (2016)CrossRefGoogle Scholar
  23. 23.
    Freiman, M., Perez-Rossello, J.M., Callahan, M.J., Voss, S.D., Ecklund, K., Mulkern, R.V., Warfield, S.K.: Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med. Image Anal. 17(3), 325–336 (2013)CrossRefGoogle Scholar
  24. 24.
    Froeling, M., Nederveen, A.J., Nicolay, K., Strijkers, G.J.: DTI of human skeletal muscle: the effects of diffusion encoding parameters, signal-to-noise ratio and T2 on tensor indices and fiber tracts. NMR in Biomed. 26(11), 1339–1352 (2013)CrossRefGoogle Scholar
  25. 25.
    Furman-Haran, E., Grobgeld, D., Nissan, N., Shapiro-Feinberg, M., Degani, H.: Can diffusion tensor anisotropy indices assist in breast cancer detection? J. Magn. Reson. Imaging 44(6), 1624–1632 (2016)CrossRefGoogle Scholar
  26. 26.
    Galea, N., Cantisani, V., Taouli, B.: Liver lesion detection and characterization: Role of diffusion-weighted imaging. J. Magn. Reson. Imaging 37(6), 1260–1276 (2013)CrossRefGoogle Scholar
  27. 27.
    Gamper, U., Boesiger, P., Kozerke, S.: Diffusion imaging of the in vivo heart using spin echoes-considerations on bulk motion sensitivity. J. Magn. Reson. Imaging 57(2), 331–337 (2007)Google Scholar
  28. 28.
    Giri, S., Chung, Y.C., Merchant, A., Mihai, G., Rajagopalan, S., Raman, S.V., Simonetti, O.P.: T2 quantification for improved detection of myocardial edema. J. Cardiovasc. Magn. Reson. 11(1), 56 (2009)CrossRefGoogle Scholar
  29. 29.
    Goshima, S., Kanematsu, M., Noda, Y., Kondo, H., Watanabe, H., Bae, K.T.: Diffusion kurtosis imaging to assess response to treatment in hypervascular hepatocellular carcinoma. AJR. Am. J. Roentgenol. 204(5), 543–9 (2015)CrossRefGoogle Scholar
  30. 30.
    Grant, K.B., Agarwal, H.K., Shih, J.H., Bernardo, M., Pang, Y., Daar, D., Merino, M.J., Wood, B.J., Pinto, P.A., Choyke, P.L., Turkbey, B.: Comparison of calculated and acquired high b value diffusion-weighted imaging in prostate cancer. Abdom. Imaging 40(3), 578–586 (2015)CrossRefGoogle Scholar
  31. 31.
    Hata, J., Yagi, K., Hikishima, K., Numano, T., Goto, M., Yano, K.: Characteristics of diffusion-weighted stimulated echo pulse sequence in human skeletal muscle. Radiol. Phys. Technol. 6(1), 92–97 (2013)CrossRefGoogle Scholar
  32. 32.
    Hedgire, S., Tonyushkin, A., Kilcoyne, A., Efstathiou, J.A., Hahn, P.F., Harisinghani, M.: Quantitative study of prostate cancer using three dimensional fiber tractography. World J. Radiol. 8(4), 397–402 (2016)CrossRefGoogle Scholar
  33. 33.
    Heemskerk, A.M., Damon, B.M.: Diffusion tensor MRI assessment of skeletal muscle architecture. Curr. Med. Imaging Rev. 3(3), 152–160 (2007)CrossRefGoogle Scholar
  34. 34.
    Heemskerk, A.M., Sinha, T.K., Wilson, K.J., Ding, Z., Damon, B.M.: Quantitative assessment of DTI-based muscle fiber tracking and optimal tracking parameters. Magn. Reson. Med. 61(2), 467–472 (2009)CrossRefGoogle Scholar
  35. 35.
    Hernando, D., Karampinos, D.C., King, K.F., Haldar, J.P., Majumdar, S., Georgiadis, J.G., Liang, Z.P.: Removal of olefinic fat chemical shift artifact in diffusion MRI. Magn. Reson. Med. 65(3), 692–701 (2011)CrossRefGoogle Scholar
  36. 36.
    Iima, M., Kataoka, M., Kanao, S., Onishi, N., Kawai, M., Ohashi, A., Sakaguchi, R., Toi, M., Togashi, K.: Intravoxel incoherent motion and quantitative non-gaussian diffusion MR imaging: evaluation of the diagnostic and prognostic value of several markers of malignant and benign breast lesions. Radiology 287(2), 432–441 (2018)CrossRefGoogle Scholar
  37. 37.
    Iima, M., Yano, K., Kataoka, M., Umehana, M., Murata, K., Kanao, S., Togashi, K., Le Bihan, D.: Quantitative non-Gaussian diffusion and intravoxel incoherent motion magnetic resonance imaging: differentiation of malignant and benign breast lesions. Investig. Radiol. 50(4), 205–211 (2015)CrossRefGoogle Scholar
  38. 38.
    Jafar, M.M., Parsai, A., Miquel, M.E.: Diffusion-weighted magnetic resonance imaging in cancer: reported apparent diffusion coefficients, in-vitro and in-vivo reproducibility. World J. Radiol. 8(1), 21–49 (2016)CrossRefGoogle Scholar
  39. 39.
    Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis imaging: The quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53(6), 1432–1440 (2005)CrossRefGoogle Scholar
  40. 40.
    Jie, C., Rongbo, L., Ping, T.: The value of diffusion-weighted imaging in the detection of prostate cancer: a meta-analysis. Eur. Radiol. 24(8), 1929–1941 (2014)CrossRefGoogle Scholar
  41. 41.
    Jin, G., An, N., Jacobs, M.A., Li, K.: The role of parallel diffusion-weighted imaging and apparent diffusion coefficient (ADC) map values for evaluating breast lesions: preliminary results. Acad. Radiol. 17(4), 456–463 (2010)CrossRefGoogle Scholar
  42. 42.
    Jones, D.K., Cercignani, M.: Twenty-five pitfalls in the analysis of diffusion MRI data. NMR Biomed. 23(7), 803–820 (2010)CrossRefGoogle Scholar
  43. 43.
    Junichi, H., Sakiko, M., Yawara, H., Masayuki, S., Yae, K., Kazuhiro, C., Hideyuki, O., Masaya, N., Keisuke, H.: Semiquantitative evaluation of muscle repair by diffusion tensor imaging in mice. J. Bone Miner. Res. Plus 2(4), 227–234 (2018)Google Scholar
  44. 44.
    Kim, Y.J., Kim, S.H., Kang, B.J., Park, C.S., Kim, H.S., Son, Y.H., Porter, D.A., Song, B.J.: Readout-segmented echo-planar imaging in diffusion-weighted mr imaging in breast cancer: comparison with single-shot echo-planar imaging in image quality. Korean J. Radiol. 15(4), 403–410 (2014)CrossRefGoogle Scholar
  45. 45.
    Koh, D.M., Collins, D.J.: Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am. J. Roentgenol. 188(6), 1622–1635 (2007)CrossRefGoogle Scholar
  46. 46.
    Korn, N., Kurhanewicz, J., Banerjee, S., Starobinets, O., Saritas, E., Noworolski, S.: Reduced-FOV excitation decreases susceptibility artifact in diffusion-weighted MRI with endorectal coil for prostate cancer detection. Magn. Reson. Imaging 33(1), 56–62 (2015)CrossRefGoogle Scholar
  47. 47.
    Kucharczyk, J., Mintorovitch, J., Asgari, H.S., Moseley, M.: Diffusion/perfusion MR imaging of acute cerebral ischemia. Magn. Reson. Med. 19(2), 311–315 (1991)CrossRefGoogle Scholar
  48. 48.
    Kung, G.L., Nguyen, T.C., Itoh, A., Skare, S., Ingels, N.B.J., Miller, D.C., Ennis, D.B.: The presence of two local myocardial sheet populations confirmed by diffusion tensor MRI and histological validation. J. Magn. Reson. Imaging 34(5), 1080–1091 (2011)CrossRefGoogle Scholar
  49. 49.
    Kurugol, S., Freiman, M., Afacan, O., Domachevsky, L., Perez-Rossello, J.M., Callahan, M.J., Warfield, S.K.: Motion-robust parameter estimation in abdominal diffusion-weighted MRI by simultaneous image registration and model estimation. Med. Image Anal. 39, 124–132 (2017)CrossRefGoogle Scholar
  50. 50.
    Lau, A.Z., Tunnicliffe, E.M., Frost, R., Koopmans, P.J., Tyler, D.J., Robson, M.D.: Accelerated human cardiac diffusion tensor imaging using simultaneous multislice imaging. Magn. Reson. Med. 73(3), 995–1004 (2015)CrossRefGoogle Scholar
  51. 51.
    Le Bihan, D., Breton, E., Lallemand, D., Aubin, M.L., Vignaud, J., Laval-Jeantet, M.: Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2), 497–505 (1988)CrossRefGoogle Scholar
  52. 52.
    Leemans, A., Jones, D.K.: The B-matrix must be rotated when correcting for subject motion in DTI data. Magn. Reson. Med. 61(6), 1336–49 (2009)CrossRefGoogle Scholar
  53. 53.
    Li, T., Yu, T., Li, L., Lu, L., Zhuo, Y., Lian, J., Xiong, Y., Kong, D., Li, K.: Use of diffusion kurtosis imaging and quantitative dynamic contrast-enhanced MRI for the differentiation of breast tumors. J. Magn. Reson. Imaging p. [Epub ahead of print] (2018).  https://doi.org/10.1002/jmri.26059CrossRefGoogle Scholar
  54. 54.
    Li, Y.T., Cercueil, J.P., Yuan, J., Chen, W., Loffroy, R., Wáng, Y.X.J.: Liver intravoxel incoherent motion (IVIM) magnetic resonance imaging: a comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation. Quant. Imaging Med. Surg. 7(1), 59–78 (2017)CrossRefGoogle Scholar
  55. 55.
    Liau, J., Lee, J., Schroeder, M.E., Sirlin, C.B., Bydder, M.: Cardiac motion in diffusion-weighted MRI of the liver: artifact and a method of correction. J. Magn. Reson. Med. 35(2), 318–327 (2012)Google Scholar
  56. 56.
    Ma, D., Lu, F., Zou, X., Zhang, H., Li, Y., Zhang, L., Chen, L., Qin, D., Wang, B.: Intravoxel incoherent motion diffusion-weighted imaging as an adjunct to dynamic contrast-enhanced MRI to improve accuracy of the differential diagnosis of benign and malignant breast lesions. Magn. Reson. Imaging 36, 175–179 (2017)CrossRefGoogle Scholar
  57. 57.
    Mazzoni, L.N., Lucarini, S., Chiti, S., Busoni, S., Gori, C., Menchi, I.: Diffusion-weighted signal models in healthy and cancerous peripheral prostate tissues: comparison of outcomes obtained at different b-values. J. Magn. Reson. Imaging 39(3), 512–518 (2014)CrossRefGoogle Scholar
  58. 58.
    McDonald, E.S., Schopp, J., Peacock, S., Olson, M.L., DeMartini, W.B., Rahbar, H., Lehman, C.D., Partridge, S.C.: Diffusion-weighted MRI: Association between patient characteristics and apparent diffusion coefficients of normal breast fibroglandular tissue at 3 tesla. AJR Am. J. Roentgenol. 202(5), 496–502 (2014)CrossRefGoogle Scholar
  59. 59.
    Mekkaoui, C., Huang, S., Chen, H.H., Dai, G., Reese, T.G., Kostis, W.J., Thiagalingam, A., Maurovich-Horvat, P., Ruskin, J.N., Hoffmann, U., Jackowski, M.P., Sosnovik, D.E.: Fiber architecture in remodeled myocardium revealed with a quantitative diffusion CMR tractography framework and histological validation. J. Magn. Reson. Imaging 14, 70 (2012)Google Scholar
  60. 60.
    Mekkaoui, C., Jackowski, M.P., Kostis, W.J., Stoeck, C.T., Thiagalingam, A., Reese, T.G., Reddy, V.Y., Ruskin, J.N., Kozerke, S., Sosnovik, D.E.: Myocardial scar delineation using diffusion tensor magnetic resonance tractography. J. Am. Heart Assoc. 7(3), e007834 (2018).  https://doi.org/10.1161/JAHA.117.007834CrossRefGoogle Scholar
  61. 61.
    Mekkaoui, C., Reese, T.G., Jackowski, M.P., Bhat, H., Kostis, W.J., Sosnovik, D.E.: In vivo fiber tractography of the right and left ventricles using diffusion tensor MRI of the entire human heart. J. Cardiovasc. Magn. Reson. 16(Suppl 1), P17 (2014)CrossRefGoogle Scholar
  62. 62.
    Mekkaoui, C., Reese, T.G., Jackowski, M.P., Bhat, H., Sosnovik, D.E.: Diffusion MRI in the heart. NMR in Biomed. 30(3), e3426 (2017)CrossRefGoogle Scholar
  63. 63.
    Murphy, P., Hooker, J., Ang, B., Wolfson, T., Gamst, A., Bydder, M., Middleton, M., Peterson, M., Behling, C., Loomba, R., Sirlin, C.: Associations between histologic features of nonalcoholic fatty liver disease (NAFLD) and quantitative diffusion-weighted MRI measurements in adults. J. Magn. Reson. Imaging 41, 1629–1638 (2015)CrossRefGoogle Scholar
  64. 64.
    Nguyen, C., Fan, Z., Sharif, B., He, Y., Dharmakumar, R., Berman, D.S., Li, D.: In vivo three-dimensional high resolution cardiac diffusion-weighted MRI: a motion compensated diffusion-prepared balanced steady-state free precession approach. Magn. Reson. Med. 72(5), 1257–1267 (2014)CrossRefGoogle Scholar
  65. 65.
    Nguyen, V.T., Rahbar, H., Olson, M.L., Liu, C.L., Lehman, C.D., Partridge, S.C.: Diffusion-weighted imaging: effects of intravascular contrast agents on apparent diffusion coefficient measures of breast malignancies at 3 Tesla. J. Magn. Reson. Imaging 42(3), 788–800 (2015)CrossRefGoogle Scholar
  66. 66.
    Nielles-Vallespin, S., Mekkaoui, C., Gatehouse, P., Reese, T.G., Keegan, J., Ferreira, P.F., Collins, S., Speier, P., Feiweier, T., de Silva, R., Jackowski, M.P., Pennell, D.J., Sosnovik, D.E., Firmin, D.: In vivo diffusion tensor MRI of the human heart: reproducibility of breath-hold and navigator-based approaches. Magn. Reson. Med. 70(2), 454–465 (2013)CrossRefGoogle Scholar
  67. 67.
    Nogueira, L., Brandão, S., Matos, E., Nunes, R.G., Loureiro, J., Ramos, I., Ferreira, H.A.: Application of the diffusion kurtosis model for the study of breast lesions. Eur. Radiol. 24(6), 1197–1203 (2014)CrossRefGoogle Scholar
  68. 68.
    Nogueira, L., Brandão, S., Nunes, R.G., Ferreira, H.A., Loureiro, J., Ramos, I.: Breast DWI at 3 T: influence of the fat-suppression technique on image quality and diagnostic performance. Clin. Radiol. 70(3), 286–294 (2015)CrossRefGoogle Scholar
  69. 69.
    Orton, M.R., Collins, D.J., Koh, D.M., Leach, M.O.: Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn. Reson. Med. 71(1), 411–420 (2014)CrossRefGoogle Scholar
  70. 70.
    Oudeman, J., Nederveen, A.J., Strijkers, G.J., Maas, M., Luijten, P.R., Froeling, M.: Techniques and applications of skeletal muscle diffusion tensor imaging: a review. J. Magn. Reson. Med. 43(4), 773–788 (2016)Google Scholar
  71. 71.
    Padhani, A.R., Liu, G., Koh, D.M., Chenevert, T.L., Thoeny, H.C., Takahara, T., Dzik-Jurasz, A., Ross, B.D., Van Cauteren, M., Collins, D., Hammoud, D.A., Rustin, G.J.S., Taouli, B., Choyke, P.L.: Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11(2), 102–125 (2009)CrossRefGoogle Scholar
  72. 72.
    Pai, V.M., Rapacchi, S., Kellman, P., Croisille, P., Wen, H.: PCATMIP: enhancing signal intensity in diffusion-weighted magnetic resonance imaging. Magn. Reson. Med. 65(6), 1611–1619 (2011)CrossRefGoogle Scholar
  73. 73.
    Partridge, S.C., Ziadloo, A., Murthy, R., White, S.W., Peacock, S., Eby, P.R., DeMartini, W.B., Lehman, C.D.: Diffusion tensor MRI: preliminary anisotropy measures and mapping of breast tumors. J. Magn. Reson. Med. 31(2), 339–347 (2010)Google Scholar
  74. 74.
    Pereira, F.P.A., Martins, G., Carvalhaes de Oliveira, R.D.V.: Diffusion magnetic resonance imaging of the breast. Magn. Reson. Imaging Clin. N. Am. 19(1), 95–110 (2011)CrossRefGoogle Scholar
  75. 75.
    Peters, N.H.G.M., Vincken, K.L., van den Bosch, M.A.A.J., Luijten, P.R., Mali, W.P.T.M., Bartels, L.W.: Quantitative diffusion weighted imaging for differentiation of benign and malignant breast lesions: the influence of the choice of b-values. J. Magn. Reson. Imaging 31(5), 1100–1105 (2010)CrossRefGoogle Scholar
  76. 76.
    Van Phi, V.D., Becker, A.S., Ciritsis, A., Reiner, C.S., Boss, A.: Intravoxel incoherent motion analysis of abdominal organs—application of simultaneous multislice acquisition. Investig. Radiol. 53(3), 179–185 (2018)CrossRefGoogle Scholar
  77. 77.
    Porter, D.A., Heidemann, R.M.: High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn. Reson. Med. 62(2), 468–475 (2009)CrossRefGoogle Scholar
  78. 78.
    Rahbar, H., Partridge, S.C., DeMartini, W.B., Thursten, B., Lehman, C.D.: Clinical and technical considerations for high quality breast MRI at 3 Tesla. J. Magn. Reson. Imaging 37(4), 778–790 (2013)CrossRefGoogle Scholar
  79. 79.
    Reese, T.G., Weisskoff, R.M., Smith, R.N., Rosen, B.R., Dinsmore, R.E., Wedeen, V.J.: Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn. Reson. Med. 34(6), 786–791 (1995)CrossRefGoogle Scholar
  80. 80.
    Reese, T., Heid, O., Weisskoff, R., Wedeen, V.: Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn. Reson. Med. 49(1), 177–182 (2003)CrossRefGoogle Scholar
  81. 81.
    Rieseberg, S., Frahm, J., Finsterbusch, J.: Two-dimensional spatially-selective RF excitation pulses in echo-planar imaging. Magn. Reson. Med. 47(6), 1186–1193 (2002)CrossRefGoogle Scholar
  82. 82.
    Rosenkrantz, A.B., Padhani, A.R., Chenevert, T.L., Koh, D.M., De Keyzer, F., Taouli, B., Le Bihan, D.: Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice. J. Magn. Reson. Med. 42(5), 1190–1202 (2015)Google Scholar
  83. 83.
    Sanz-Estébanez, S., Rabanillo-Viloria, I., Royuela-del Val, J., Aja-Fernández, S., Alberola-López, C.: Joint groupwise registration and ADC estimation in the liver using a b-value weighted metric. Magn. Reson. Imaging 46, 1–9 (2018)CrossRefGoogle Scholar
  84. 84.
    Scheel, M., von Roth, P., Winkler, T., Arampatzis, A., Prokscha, T., Hamm, B., Diederichs, G.: Fiber type characterization in skeletal muscle by diffusion tensor imaging. NMR in Biomed. 26(10), 1220–1224 (2013)CrossRefGoogle Scholar
  85. 85.
    Scott, A.D., Nielles-Vallespin, S., Ferreira, P.F., Khalique, Z., Gatehouse, P.D., Kilner, P., Pennell, D.J., Firmin, D.N.: An in-vivo comparison of stimulated-echo and motion compensated spin-echo sequences for 3 T diffusion tensor cardiovascular magnetic resonance at multiple cardiac phases. J. Cardiovasc. Magn. Reson. 20(1), 1 (2018)CrossRefGoogle Scholar
  86. 86.
    Setsompop, K., Gagoski, B.A., Polimeni, J.R., Witzel, T., Wedeen, V.J., Wald, L.L.: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn. Reson. Med. 67(5), 1210–1224 (2012)CrossRefGoogle Scholar
  87. 87.
    Slator, P.J., Hutter, J., McCabe, L., Gomes, A.D.S., Price, A.N., Panagiotaki, E., Rutherford, M.A., Hajnal, J.V., Alexander, D.C.: Placenta microstructure and microcirculation imaging with diffusion MRI. Magn. Reson. Med. 80(2), 756–766 (2018)CrossRefGoogle Scholar
  88. 88.
    Taimouri, V., Afacan, O., Perez-Rossello, J.M., Callahan, M.J., Mulkern, R.V., Warfield, S.K., Freiman, M.: Spatially constrained incoherent motion method improves diffusion-weighted MRI signal decay analysis in the liver and spleen. Med. Phys. 42(4), 1895–1903 (2015)CrossRefGoogle Scholar
  89. 89.
    Tamada, T., Huang, C., Ream, J.M., Taffel, M., Taneja, S.S., Rosenkrantz, A.B.: Apparent diffusion coefficient values of prostate cancer: comparison of 2D and 3D ROIs. AJR Am. J. Roentgenol. 210(1), 113–117 (2018)CrossRefGoogle Scholar
  90. 90.
    Tamada, T., Prabhu, V., Li, J., Babb, J.S., Taneja, S.S., Rosenkrantz, A.B.: Prostate cancer: diffusion-weighted MR imaging for detection and assessment of aggressiveness-comparison between conventional and kurtosis models. Radiology 284(1), 100–108 (2017)CrossRefGoogle Scholar
  91. 91.
    Tamada, T., Sone, T., Jo, Y., Yamamoto, A., Ito, K.: Diffusion-weighted MRI and its role in prostate cancer. NMR in Biomed. 27(1), 25–38 (2014)CrossRefGoogle Scholar
  92. 92.
    Teruel, J.R., Cho, G.Y., Moccaldi Rt, M., Goa, P.E., Bathen, T.F., Feiweier, T., Kim, S.G., Moy, L., Sigmund, E.E.: Stimulated echo diffusion tensor imaging (STEAM-DTI) with varying diffusion times as a probe of breast tissue. J. Magn. Reson. Imaging 45(1), 84–93 (2017)CrossRefGoogle Scholar
  93. 93.
    Tian, W., Zhang, J., Tian, F., Shen, J., Niu, T., He, G., Yu, H.: Correlation of diffusion tensor imaging parameters and Gleason scores of prostate cancer. Exp. Ther. Med. 15(1), 351–356 (2018)Google Scholar
  94. 94.
    Türkbey, B., Aras, Ö., Karabulut, N., Turgut, A.T., Akpnar, E., Alibek, S., Pang, Y., Erturk, S.M., Khouli, R.H.E., Bluemke, D.A., Choyke, P.L.: Diffusion-weighted MRI for detecting and monitoring cancer: a review of current applications in body imaging. Diagn. Interv. Radiol. 18, 46–59 (2012)Google Scholar
  95. 95.
    Vargas, H.A., Lawrence, E.M., Mazaheri, Y., Sala, E.: Updates in advanced diffusion-weighted magnetic resonance imaging techniques in the evaluation of prostate cancer. World J. Radiol. 7(8), 184–188 (2014)CrossRefGoogle Scholar
  96. 96.
    Wang, Q., Li, H., Yan, X., Wu, C.J., Liu, X.S., Shi, H.B., Zhang, Y.D.: Histogram analysis of diffusion kurtosis magnetic resonance imaging in differentiation of pathologic Gleason grade of prostate cancer. Urologic Oncol. 33(8), 15–24 (2015)Google Scholar
  97. 97.
    Wei, H., Viallon, M., Delattre, B.M.A., Moulin, K., Yang, F., Croisille, P., Zhu, Y.: Free-breathing diffusion tensor imaging and tractography of the human heart in healthy volunteers using wavelet-based image fusion. IEEE Trans. Med. Imaging 34(1), 306–316 (2015)CrossRefGoogle Scholar
  98. 98.
    Weinreb, J.C., Barentsz, J.O., Choyke, P.L., Cornud, F., Haider, M.A., Macura, K.J., Margolis, D., Schnall, M.D., Shtern, F., Tempany, C.M., Thoeny, H.C., Verma, S.: PI-RADS prostate imaging—reporting and data system: 2015, version 2. Eur. Urol. 69(1), 16–40 (2016)CrossRefGoogle Scholar
  99. 99.
    Weiss, J., Martirosian, P., Taron, J., Othman, A.E., Kuestner, T., Erb, M., Bedke, J., Bamberg, F., Nikolaou, K., Notohamiprodjo, M.: Feasibility of accelerated simultaneous multislice diffusion-weighted MRI of the prostate. J. Magn. Reson. Imaging 46(5), 1507–1515 (2017)CrossRefGoogle Scholar
  100. 100.
    While, P.T.: A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI. Magn. Reson. Med. 78(6), 2373–2387 (2017)CrossRefGoogle Scholar
  101. 101.
    Whitcher, B., Tuch, D.S., Wisco, J.J., Sorensen, A.G., Wang, L.: Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging. Hum. Brain Mapp. 29(3), 346–362 (2008)CrossRefGoogle Scholar
  102. 102.
    Winters, K.V., Reynaud, O., Novikov, D.S., Fieremans, E., Kim, S.G.: Quantifying myofiber integrity using diffusion MRI and random permeable barrier modeling in skeletal muscle growth and Duchenne muscular dystrophy model in mice. Magn. Reson. Med. p. [Epub ahead of print] (2018).  https://doi.org/10.1002/mrm.27188CrossRefGoogle Scholar
  103. 103.
    Yang, L., Rao, S., Wang, W., Chen, C., Ding, Y., Yang, C., Grimm, R., Yan, X., Fu, C., Zeng, M.: Staging liver fibrosis with DWI: is there an added value for diffusion kurtosis imaging? Eur. Radiol. 28(7), 3041–3049 (2018)CrossRefGoogle Scholar
  104. 104.
    Zech, C.J., Herrmann, K.A., Dietrich, O., Horger, W., Reiser, M.F., Schoenberg, S.O.: Black-blood diffusion-weighted EPI acquisition of the liver with parallel imaging: comparison with a standard T2-weighted sequence for detection of focal liver lesions. Investig. Radiol. 43(4), 261–266 (2008)CrossRefGoogle Scholar
  105. 105.
    Zhang, K., Shen, Y., Zhang, X., Ma, L., Wang, H., An, N., Guo, A., Ye, H.: Predicting prostate biopsy outcomes: a preliminary investigation on screening with ultrahigh b-value diffusion-weighted imaging as an innovative diagnostic biomarker. PloS One 11(3), e0151176 (2016).  https://doi.org/10.1371/journal.pone.0151176CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Systems and Robotics (LARSYS) and Department of BioengineeringInstituto Superior Técnico, University of LisbonLisbonPortugal
  2. 2.Department of RadiologySchool of Health/Polytechnic of Porto (ESS-P.Porto)PortoPortugal
  3. 3.Institute of Biomedical Sciences Abel Salazar (ICBAS), University of PortoPortoPortugal
  4. 4.Department of RadiologyCentro Hospitalar de São João - EPE/Faculty of Medicine, University of PortoPortoPortugal
  5. 5.CESPU, CRL - Advanced Institute of Health SciencesGandra, ParedesPortugal
  6. 6.Associated Laboratory for Energy, Transports and Aeronautics (LAETA), Institute of Science and Innovation in Mechanical and Industrial Engineering (INEGI), Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations