Advertisement

Muti-shell Diffusion MRI Harmonisation and Enhancement Challenge (MUSHAC): Progress and Results

  • Lipeng NingEmail author
  • Elisenda Bonet-Carne
  • Francesco Grussu
  • Farshid Sepehrband
  • Enrico Kaden
  • Jelle Veraart
  • Stefano B. Blumberg
  • Can Son Khoo
  • Marco Palombo
  • Jaume Coll-Font
  • Benoit Scherrer
  • Simon K. Warfield
  • Suheyla Cetin Karayumak
  • Yogesh Rathi
  • Simon Koppers
  • Leon Weninger
  • Julia Ebert
  • Dorit Merhof
  • Daniel Moyer
  • Maximilian Pietsch
  • Daan Christiaens
  • Rui Teixeira
  • Jacques-Donald Tournier
  • Andrey Zhylka
  • Josien Pluim
  • Greg Parker
  • Umesh Rudrapatna
  • John Evans
  • Cyril Charron
  • Derek K. Jones
  • Chantal W. M. Tax
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

We present a summary of competition results in the multi-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC). MUSHAC is an open competition intended to stimulate the development of computational methods that reduce scanner- and protocol-related variabilities in multi-shell diffusion MRI data across multi-site studies. Twelve different methods from seven research groups have been tested in this challenge. The results show that cross-vendor harmonization and enhancement can be performed by using suitable computational algorithms such as deep convolutional neural networks. Moreover, parametric models for multi-shell diffusion MRI signals also provide reliable performances.

Keywords

Diffusion MRI Harmonisation Spherical harmonics Deep learning Parametric model 

Notes

Acknowledgements

CMWT is supported by a Rubicon grant (680-50-1527) from the Netherlands Organisation for Scientific Research (NWO) and Wellcome Trust grant (096646/Z/11/Z). LN is supported in part by NIH grants R21MH115280 and R21MH116352. FG is funded by the Horizon2020-EU.3.1 CDS-QuaMRI grant (ref.: 634541) and by the Engineering and Physical Sciences Research Council (EPSRC ref.: EP/M020533/1 and EP/R006032/1). EBC is supported by Prostate Cancer UK (Grant PG14-018-TR2) and by the Engineering and Physical Sciences Research Council (EPSRC ref.: EP/M020533/1). DKJ was supported by MRC grant MR/K004360/1. Scan costs were supported by the National Centre for Mental Health (NCMH) with funds from Health and Care Support Wales and by the Wellcome Trust. JV is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO; grant number 12S1615N). AZ has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 765148. SK was supported by the International Research Training Group 2150 of the German Research Foundation (DFG).

References

  1. 1.
    Vollmar, C., O’Muircheartaigh, J., Barker, G.J., Symms, M.R., Thompson, P., Kumari, V., Duncan, J.S., Richardson, M.P., Koepp, M.J.: Identical, but not the same: intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0t scanners. NeuroImage 51(4), 1384–1394 (2010)CrossRefGoogle Scholar
  2. 2.
    Landman, B.A., Farrell, J.A., Jones, C.K., Smith, S.A., Prince, J.L., Mori, S.: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T. NeuroImage 36(4), 1123–1138 (2007)Google Scholar
  3. 3.
    Landman, B.A., Huang, A.J., Gifford, A., Vikram, D.S., Lim, I.A.L., Farrell, J.A., Bogovic, J.A., Hua, J., Chen, M., Jarso, S., Smith, S.A., Joel, S., Mori, S., Pekar, J.J., Barker, P.B., Prince, J.L., van Zijl, P.C.: Multi-parametric neuroimaging reproducibility: A 3-T resource study. NeuroImage 54(4), 2854–2866 (2011)CrossRefGoogle Scholar
  4. 4.
    Pohl, K.M., Sullivan, E.V., Rohlfing, T., Chu, W., Kwon, D., Nichols, B.N., Zhang, Y., Brown, S.A., Tapert, S.F., Cummins, K., Thompson, W.K., Brumback, T., Colrain, I.M., Baker, F.C., Prouty, D., Bellis, M.D.D., Voyvodic, J.T., Clark, D.B., Schirda, C., Nagel, B.J., Pfefferbaum, A.: Harmonizing DTI measurements across scanners to examine the development of white matter microstructure in 803 adolescents of the NCANDA study. NeuroImage 130, 194–213 (2016)CrossRefGoogle Scholar
  5. 5.
    Fortin, J.P., Parker, D., Tun, B., Watanabe, T., Elliott, M.A., Ruparel, K., Roalf, D.R., Satterthwaite, T.D., Gur, R.C., Gur, R.E., Schultz, R.T., Verma, R., Shinohara, R.T.: Harmonization of multi-site diffusion tensor imaging data. NeuroImage 161, 149–170 (2017)CrossRefGoogle Scholar
  6. 6.
    Mirzaalian, H., Ning, L., Savadjiev, P., Pasternak, O., Bouix, S., Michailovich, O., Grant, G., Marx, C., Morey, R., Flashman, L., George, M., McAllister, T., Andaluz, N., Shutter, L., Coimbra, R., Zafonte, R., Coleman, M., Kubicki, M., Westin, C., Stein, M., Shenton, M., Rathi, Y.: Inter-site and inter-scanner diffusion MRI data harmonization. NeuroImage 135, 311–323 (2016)CrossRefGoogle Scholar
  7. 7.
    Mirzaalian, H., Ning, L., Savadjiev, P., Pasternak, O., Bouix, S., Michailovich, O., Karmacharya, S., Grant, G., Marx, C.E., Morey, R.A., Flashman, L.A., George, M.S., McAllister, T.W., Andaluz, N., Shutter, L., Coimbra, R., Zafonte, R.D., Coleman, M.J., Kubicki, M., Westin, C.F., Stein, M.B., Shenton, M.E., Rathi, Y.: Multi-site harmonization of diffusion MRI data in a registration framework. Brain Imaging Behav. 12(1), 284–295 (2018)CrossRefGoogle Scholar
  8. 8.
    Karayumak, S.C., Bouix, S., Ning, L., James, A., Crow, T., Shenton, M., Kubicki, M., Rathi, Y.: Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters. NeuroImage 184, 180–200 (2019)CrossRefGoogle Scholar
  9. 9.
    Tax, C., et al.: Cross-vendor and cross-protocol harmonisation of diffusion tensor imaging data: a comparative study. ISMRM-ESMRMB. Number 0471 (2018)Google Scholar
  10. 10.
    Tax, C., et al.: Cross-scanner and cross-protocol diffusion mri data harmonisation: a benchmark database and evaluation of algorithms. submitted (2018)Google Scholar
  11. 11.
    Andersson, J.L., Skare, S., Ashburner, J.: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20(2), 870–888 (2003)CrossRefGoogle Scholar
  12. 12.
    Andersson, J.L., Sotiropoulos, S.N.: An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125, 1063–1078 (2016)CrossRefGoogle Scholar
  13. 13.
    Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Essen, D.C.V., Jenkinson, M.: The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013)CrossRefGoogle Scholar
  14. 14.
    Bammer, R., Markl, M., Barnett, A., Acar, B., Alley, M., Pelc, N., Glover, G., Moseley, M.: Analysis and generalized correction of the effect of spatial gradient field distortions in diffusion-weighted imaging. Magn. Reson. Med. 50(3) 560–569CrossRefGoogle Scholar
  15. 15.
    Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., Moeller, S., Auerbach, E.J., Glasser, M.F., Hernandez, M., Sapiro, G., Jenkinson, M., Feinberg, D.A., Yacoub, E., Lenglet, C., Essen, D.C.V., Ugurbil, K., Behrens, T.E.: Advances in diffusion MRI acquisition and processing in the human connectome project. NeuroImage 80, 125–143 (2013)CrossRefGoogle Scholar
  16. 16.
    Rudrapatna, S.U., Parker, G.D., Roberts, J., Jones, D.K.: Can we correct for interactions between subject motion and gradient-nonlinearity in diffusion MRI? ISMRM. Number (1206 (2018))Google Scholar
  17. 17.
    Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., Kaczynski, K.: Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn. Reson. Med. 53(6), 1432–1440 (2005)CrossRefGoogle Scholar
  18. 18.
    Özarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., Irfanoglu, M.O., Pierpaoli, C., Basser, P.J.: Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. NeuroImage 78, 16–32 (2013)CrossRefGoogle Scholar
  19. 19.
    Garyfallidis, E., Brett, M., Amirbekian, B., Rokem, A., Van Der Walt, S., Descoteaux, M., Nimmo-Smith, I., Contributors, D.: Dipy, a library for the analysis of diffusion MRI data. Front. Neuroinformatics 8, 8 (2014)CrossRefGoogle Scholar
  20. 20.
    Cardoso, M.J., Modat, M., Wolz, R., Melbourne, A., Cash, D., Rueckert, D., Ourselin, S.: Geodesic information flows: spatially-variant graphs and their application to segmentation and fusion. IEEE Trans. Med. Imaging 34(9), 1976–1988 (2015)CrossRefGoogle Scholar
  21. 21.
    Scherrer, B., Schwartzman, A., Taquet, M., Sahin, M., Prabhu, S.P., Warfield, S.K.: Characterizing brain tissue by assessment of the distribution of anisotropic microstructural environments in diffusion-compartment imaging (DIAMOND). Magn. Reson. Med. 76(3), 963–977 (2016)CrossRefGoogle Scholar
  22. 22.
    Blumberg, S.B., Tanno, R., Kokkinos, I., Alexander, D.C.: Deeper image quality transfer: training low-memory neural networks for 3D images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) Medical Image Computing and Computer Assisted Intervention—MICCAI 2018., pp. 118–125 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lipeng Ning
    • 1
    • 2
    Email author
  • Elisenda Bonet-Carne
    • 3
  • Francesco Grussu
    • 3
  • Farshid Sepehrband
    • 4
  • Enrico Kaden
    • 3
  • Jelle Veraart
    • 5
  • Stefano B. Blumberg
    • 3
  • Can Son Khoo
    • 3
  • Marco Palombo
    • 3
  • Jaume Coll-Font
    • 2
    • 6
  • Benoit Scherrer
    • 2
    • 6
  • Simon K. Warfield
    • 2
    • 6
  • Suheyla Cetin Karayumak
    • 1
    • 2
  • Yogesh Rathi
    • 1
    • 2
  • Simon Koppers
    • 7
  • Leon Weninger
    • 7
  • Julia Ebert
    • 7
  • Dorit Merhof
    • 7
  • Daniel Moyer
    • 4
  • Maximilian Pietsch
    • 8
  • Daan Christiaens
    • 8
  • Rui Teixeira
    • 8
  • Jacques-Donald Tournier
    • 8
  • Andrey Zhylka
    • 9
  • Josien Pluim
    • 9
  • Greg Parker
    • 10
  • Umesh Rudrapatna
    • 10
  • John Evans
    • 10
  • Cyril Charron
    • 10
  • Derek K. Jones
    • 10
    • 11
  • Chantal W. M. Tax
    • 10
  1. 1.Brigham and Women’s HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA
  3. 3.University College LondonLondonUK
  4. 4.University of Southern CaliforniaLos AngelesUSA
  5. 5.New York UniversityNew York CityUSA
  6. 6.Boston Children’s HospitalBostonUSA
  7. 7.RWTH Aachen UniversityAachenGermany
  8. 8.King’s College LondonLondonUK
  9. 9.Eindhoven University of TechnologyEindhovenNetherlands
  10. 10.CUBRIC, School of PsychologyCardiff UniversityCardiffUK
  11. 11.School of PsychologyAustralian Catholic UniversityMelbourneAustralia

Personalised recommendations