Advertisement

Effects of Diffusion MRI Model and Harmonization on the Consistency of Findings in an International Multi-cohort HIV Neuroimaging Study

  • Talia M. Nir
  • Hei Y. Lam
  • Jintanat Ananworanich
  • Jasmina Boban
  • Bruce J. Brew
  • Lucette Cysique
  • J. P. Fouche
  • Taylor Kuhn
  • Eric S. Porges
  • Meng Law
  • Robert H. Paul
  • April Thames
  • Adam J. Woods
  • Victor G. Valcour
  • Paul M. ThompsonEmail author
  • Ronald A. Cohen
  • Dan J. Stein
  • Neda Jahanshad
Conference paper
Part of the Mathematics and Visualization book series (MATHVISUAL)

Abstract

HIV-related white matter (WM) differences reported across studies are inconsistent. This is due to clinical and demographic heterogeneity of HIV infected populations, and variations in diffusion MRI (dMRI) acquisition, processing, and analysis methods across studies. Therefore, reliable neuroanatomical consequences of infection and therapeutic targets are difficult to identify. Here, we pooled data from six existing HIV studies from around the world as part of the ENIGMA-HIV consortium to evaluate (1) the effects of harmonization of dMRI measures across sites using ComBat, and (2) whether an improved, higher-order tensor dMRI model, the tensor distribution function (TDF), and derived scalar index (FATDF) conferred higher sensitivity across heterogeneous sites to understand the effect of HIV on WM microstructure. This study suggests that improved dMRI indices and harmonization of these measures across cohorts, may be helpful for detecting consistent effects of disease on the brain in international multi-site studies, while preserving biological differences.

Keywords

HIV Multi-site Harmonization TDF Diffusion MRI ComBat DTI 

Notes

Acknowledgements

Funding for ENIGMA is provided as part of the BD2K Initiative U54 EB020403 to support big data analytics, and by P41 EB015922. Work from each site was funded by: (1) UCLA: K23MH095661, Clinical and Translational Research Center Grants UL1RR033176 and UL1TR000124 (ADT); MH19535 (TK); (2) Serbia: Provincial Secretariat for Higher Education and Scientific Research 114-451-2730/2016-02; (3) UNSW: NHMRC APP568746 (LC); (4) Brown and ARCH: R01MH074368, the Lifespan/Tufts/Brown Center for AIDS Research P30 AI042853, P01AA019072 (RC); (5) UCSF: K23AG032872 (VV), R01AG048234, and R01AG032289; (6) Resilience: R01MH102151 (JA). This work was also supported by R01MH085604 Neuropathogenesis of clade C HIV in South Africa.

References

  1. 1.
    Ellis, R., Langford, D., Masliah, E.: HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nature Reviews Neuroscience 8, 33–44 (2007)CrossRefGoogle Scholar
  2. 2.
    O’Connor, E.E., et al.: Reliability of White Matter Microstructural Changes in HIV Infection: Metaanalysis and Confirmation. American Journal of Neuroradiology 38(8), 1510–1519 (2017)CrossRefGoogle Scholar
  3. 3.
    Zhan, L., et al.: How does angular resolution affect diffusion imaging measures? Neuroimage 49(2), 1357–71 (2010)CrossRefGoogle Scholar
  4. 4.
    Kim, M., et al.: Spatial resolution dependence of DTI tractography in human occipito-callosal region. Neuroimage 32(3), 1243–9 (2006)CrossRefGoogle Scholar
  5. 5.
    Zhu, T., et al.: Quantification of accuracy and precision of multi-center DTI measurements: a diffusion phantom and human brain study. Neuroimage 56(3), 1398–411 (2011)CrossRefGoogle Scholar
  6. 6.
    Fortin, J.-P., et al.: Harmonization of multi-site diffusion tensor imaging data. NeuroImage 161, 149–170 (2017)CrossRefGoogle Scholar
  7. 7.
    Johnson, W.E., Li, C., Rabinovic, A.: Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8(1), 118–127 (2007)CrossRefGoogle Scholar
  8. 8.
    Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys J 66(1), 259–67 (1994)CrossRefGoogle Scholar
  9. 9.
    Jeurissen, B., et al.: Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp 34(11), 2747–66 (2013)CrossRefGoogle Scholar
  10. 10.
    Descoteaux, M., et al.: Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans Med Imaging 28(2), 269–86 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Leow, A.D., et al.: The tensor distribution function. Magn Reson Med 61(1), 205–14 (2009)CrossRefGoogle Scholar
  12. 12.
    Nir, T.M., et al.: Fractional anisotropy derived from the diffusion tensor distribution function boosts power to detect Alzheimer’s disease deficits. Magn Reson Med 78(6), 2322–2333 (2017)CrossRefGoogle Scholar
  13. 13.
    Tuch, D.S.: Q-ball imaging. Magn Reson Med 52(6), 1358–72 (2004)CrossRefGoogle Scholar
  14. 14.
    Wedeen, V.J., et al.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54(6), 1377–86 (2005)CrossRefGoogle Scholar
  15. 15.
    Wu, E.X., Cheung, M.M.: MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed 23(7), 836–48 (2010)CrossRefGoogle Scholar
  16. 16.
    Zhang, H., et al.: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage 61(4), 1000–16 (2012)CrossRefGoogle Scholar
  17. 17.
    Isaev, D.Y., et al.: Improved clinical diffusion MRI reliability using a tensor distribution function compared to a single tensor. In: 12th International Symposium on Medical Information Processing and Analysis 2017, SPIE, vol. 10160, pp. 8, (2017)Google Scholar
  18. 18.
    Paul, R., et al.: Structural Neuroimaging and Neuropsychologic Signatures in Children With Vertically Acquired HIV. Pediatr Infect Dis J 37(7), 662–668 (2018)Google Scholar
  19. 19.
    Manjon, J.V., et al.: Diffusion weighted image denoising using overcomplete local PCA. PLoS One 8(9), e73021 (2013)CrossRefGoogle Scholar
  20. 20.
    Coupe, P., et al.: An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging 27(4), 425–41 (2008)CrossRefGoogle Scholar
  21. 21.
    Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17(1), 87–97 (1998)CrossRefGoogle Scholar
  22. 22.
    Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–81 (2012)CrossRefGoogle Scholar
  23. 23.
    Avants, B.B., et al.: A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54(3), 2033–44 (2011)CrossRefGoogle Scholar
  24. 24.
    Watson, C., et al.: White matter hyperintensities correlate to cognition and fiber tract integrity in older adults with HIV. J Neurovirol 23(3), 422–429 (2017)CrossRefGoogle Scholar
  25. 25.
    Cysique, L.A., et al.: White matter measures are near normal in controlled HIV infection except in those with cognitive impairment and longer HIV duration. J Neurovirol 23(4), 539–547 (2017)CrossRefGoogle Scholar
  26. 26.
    Kuhn, T., et al.: An augmented aging process in brain white matter in. HIV. 39(6), 2532–2540 (2018)Google Scholar
  27. 27.
    Seider, T.R., et al.: Age Exacerbates HIV-Associated White Matter Abnormalities. Journal of neurovirology 22(2), 201–212 (2016)CrossRefGoogle Scholar
  28. 28.
    Gullett, J.M., et al.: The Impact of Alcohol Use on Frontal White Matter in. HIV. (2018)Google Scholar
  29. 29.
    Boban, J., et al.: HIV-associated neurodegeneration and neuroimmunity: multivoxel MR spectroscopy study in drug-naive and treated patients. Eur Radiol 27(10), 4218–4236 (2017)CrossRefGoogle Scholar
  30. 30.
    Jahanshad, N., et al.: Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. Neuroimage 81, 455–69 (2013)CrossRefGoogle Scholar
  31. 31.
    Smith, S.M., et al.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4), 1487–505 (2006)CrossRefGoogle Scholar
  32. 32.
    Mori, S., et al.: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage 40(2), 570–582 (2008)CrossRefGoogle Scholar
  33. 33.
    Fortin, J.P., et al.: Harmonization of cortical thickness measurements across scanners and sites. NeuroImage 167, 104–120 (2018)CrossRefGoogle Scholar
  34. 34.
    Meichen, Y., et al.: Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Human Brain Mapping [Epub ahead of print] (2018)Google Scholar
  35. 35.
    Benjamini, Y., Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57(1), 289–300 (1995)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Talia M. Nir
    • 1
  • Hei Y. Lam
    • 1
  • Jintanat Ananworanich
    • 2
  • Jasmina Boban
    • 3
  • Bruce J. Brew
    • 4
  • Lucette Cysique
    • 4
  • J. P. Fouche
    • 5
  • Taylor Kuhn
    • 6
  • Eric S. Porges
    • 7
  • Meng Law
    • 8
  • Robert H. Paul
    • 9
  • April Thames
    • 6
    • 10
  • Adam J. Woods
    • 7
  • Victor G. Valcour
    • 11
  • Paul M. Thompson
    • 1
    Email author
  • Ronald A. Cohen
    • 7
    • 12
  • Dan J. Stein
    • 5
  • Neda Jahanshad
    • 1
  1. 1.Imaging Genetics CenterMark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern CaliforniaMarina del ReyUSA
  2. 2.HIV-NATThai Red Cross AIDS Research CentreBangkokThailand
  3. 3.Faculty of Medicine, Diagnostic Imaging CenterUniversity of Novi SadNovi SadSerbia
  4. 4.Department of NeurologySt Vincent’s Hospital, and University of New South WalesSydneyAustralia
  5. 5.Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownSouth Africa
  6. 6.Semel Institute for Neuroscience and Human BehaviorUniversity of CaliforniaLos AngelesUSA
  7. 7.Institute on Aging, Department of Aging and Geriatric ResearchSchool of Medicine, University of FloridaGainesvilleUSA
  8. 8.Department of RadiologyKeck School of Medicine, University of Southern CaliforniaLos AngelesUSA
  9. 9.Missouri Institute of Mental HealthUniversity of Missouri in Saint LouisSaint LouisUSA
  10. 10.Department of PsychologyUniversity of Southern CaliforniaLos AngelesUSA
  11. 11.Memory and Aging Center, Department of NeurologyUniversity of CaliforniaSan FranciscoUSA
  12. 12.Department of Psychiatry and Human Behavior, Warren Alpert Medical SchoolBrown UniversityProvidenceUSA

Personalised recommendations